Tìm nghiệm nguyên của phương trình:
x4 - 2y4 - x2y2 - 4x2 - 7y2 - 5 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu x, y không chia hết cho 3 thì x2 chia cho 3 dư 1, do đó \(\left(x^2+2\right)^2\) chia hết cho 3.
Mà \(2y^4+11y^2+x^2y^2+9\) không chia hết cho 3 nên suy ra vô lí.
Do đó x = 3 hoặc y = 3 (Do x, y là các số nguyên tố).
Với x = 3 ta có \(2y^4+20y^2+9=121\Leftrightarrow y^4+10y^2-56=0\Leftrightarrow\left(y^2-4\right)\left(y^2+14\right)=0\Leftrightarrow y=2\) (Do y là số nguyên tố).
Với y = 3 ta có:
\(\left(x^2+2\right)^2=9x^2+270\Leftrightarrow x^4-5x^2-266=0\Leftrightarrow\left(x^2+14\right)\left(x^2-19\right)=0\). Không tồn tại số nguyên tố x thoả mãn.
Vậy x = 2; y = 3.
\(4x^2+5y^2=2022\) (1)
-Vì \(4x^2⋮2\) và \(2022⋮2\) nên \(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)
-Đặt \(y=2k\left(k\in Z\right)\) và thay vào (1) ta được:
\(4x^2+5.\left(2k\right)^2=2022\)
\(\Leftrightarrow4x^2+5.4k^2=2022\)
\(\Leftrightarrow4x^2+20k^2=2022\)
\(\Leftrightarrow x^2+5k^2=\dfrac{2022}{4}=505.5\) (vô lý do x,k là các số nguyên)
-Vậy phương trình vô nghiệm.
Ta có: −4x2 + 9 = 0 ⇔ 4x2 = 9
⇔ x 2 = 9 4 ⇔ x = 3 2 x = − 3 2
phương trình có hai nghiệm
x = 3 2 ; x = − 3 2
Đáp án cần chọn là: D
+4xy vào mỗi vế
=> nhóm VP = (xy+2)^2; VT = (2x+y)^2 + 3x + 3y
=> VT là SCP
kẹp:
(2x+y)^2< (2x+y)^2 + 3x + 3y<(2x+y+2)^2(do x,y nguyên dương)
=> (2x+y)^2 + 3x + 3y = (2x+y+1)^2
=> y = x+1
thay vào
x2y2+4=4x2+y2+3x+3y
r giải pt có x,ytự làm nốt
a. Thay x =-3 vào vế trái của phương trình , ta có:
3.(-3)2+2(-3) -21 =27 – 6 -21 =0
Vậy =-3 là nghiệm của phương trình 3x2 +2x -21 =0
Theo hệ thức vi-ét ta có : x1x2 = c/a = -21/3 = -7 ⇒ x2 = -7/x1 = -7/-3 = 7/3
Vậy nghiệm còn lại là x = 7/3
b. Thay x =5 vào vế trái của phương trình ,ta có:
-4.52 -3.5 +115 =-100 -15 +115 =0
Vậy x=5 là nghiệm của phương trình -4x2 -3x +115=0
Theo hệ thức Vi-ét ta có : x1x2 = c/a = 115/-4 ⇒ 5x2 = -115/4 ⇒ x2 = -23/4
Vậy nghiệm còn lại là x = -23/4