Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+3x-3y=21
<=>x(y+3)-3(y+3)-12=0
<=>(x-3)(y+3)=12
đến đây là pt ước số rồi,tự giải
\(\left\{{}\begin{matrix}3x+y=m+1\\x-2y=5m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+2y=2m+2\\x-2y=5m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x-2y=5m-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=m\\m-2y=5m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=1-2m\end{matrix}\right.\\ 4x^2-y^2=10\Leftrightarrow4m^2-\left(1-2m\right)^2=10\\ \Leftrightarrow4m^2-4m^2+4m-1=10\\ \Leftrightarrow m=\dfrac{11}{4}\)
Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.
\(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)
Coi phương trình trên có ẩn là x.
Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)
\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)
\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)
Thay vào từng giá trị nguyên của y để tìm x=)
phân tích pt ta được: \(\left(2x-3\right)\left(7-2y\right)=-35\)
+4xy vào mỗi vế
=> nhóm VP = (xy+2)^2; VT = (2x+y)^2 + 3x + 3y
=> VT là SCP
kẹp:
(2x+y)^2< (2x+y)^2 + 3x + 3y<(2x+y+2)^2(do x,y nguyên dương)
=> (2x+y)^2 + 3x + 3y = (2x+y+1)^2
=> y = x+1
thay vào
x2y2+4=4x2+y2+3x+3y
r giải pt có x,ytự làm nốt