K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

1) Đk: x >/ 1

Đặt \(\left\{{}\begin{matrix}a=\sqrt{3x-2}\\b=\sqrt{x-1}\end{matrix}\right.\left(a,b\ge0\right)\)

ta có hpt: \(\left\{{}\begin{matrix}a^2-3b^2=1\\a+b=3\end{matrix}\right.\)

Tự giải tiếp nhé, phương pháp thế. Chỉ cần ra được a HOẶC b thôi.

2) Đk: x >/ -1/4

Đặt \(\left\{{}\begin{matrix}a=\sqrt{4x+1}\\b=\sqrt{3x+4}\end{matrix}\right.\left(a,b\ge0\right)\)

ta có hpt: \(\left\{{}\begin{matrix}3a^2-4b^2=-13\\a-b=1\end{matrix}\right.\)

Tự làm tiếp nhé

18 tháng 7 2018

Đk: -3\<x\<2

Đặt \(\left\{{}\begin{matrix}a=\sqrt{3+x}\\b=\sqrt{2-x}\end{matrix}\right.\left(a,b\ge0\right)\)

Ta có hpt: \(\left\{{}\begin{matrix}a^2+b^2=5\left(1\right)\\a-b=1\left(2\right)\end{matrix}\right.\)

(2) \(a=1+b\) (*)

Thay (*) vào (1), ta được:

\(\left(1+b\right)^2+b^2=5\) \(\Leftrightarrow2b^2+2b-4=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=1\left(N\right)\\b=-2\left(L\right)\end{matrix}\right.\)

Với b=1. ta có: \(\sqrt{2-x}=1\Leftrightarrow x=1\left(N\right)\)

Kl: x=1

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

1/ ĐKXĐ: $4x^2-4x-11\geq 0$

PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$

$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)

$\Leftrightarrow 2a^2-a-6=0$

$\Leftrightarrow (a-2)(2a+3)=0$

Vì $a\geq 0$ nên $a=2$

$\Leftrightarrow \sqrt{4x^2-4x-11}=2$

$\Leftrightarrow 4x^2-4x-11=4$

$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$

$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

2/ ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$

$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)

$\Leftrightarrow a^2-3a-14=0$

$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)

$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$

$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$

19 tháng 8 2017

a) dat x-1=a

x=a+1

\(a+1+\sqrt{5+\sqrt{a}}=6\)

\(5-a=\sqrt{5+\sqrt{a}}\)

\(25-10a+a^2=5+\sqrt{a}\)

\(20-10a+a^2-\sqrt{a}=0\)

(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0

19 tháng 8 2017

đúng nhưng b,c,d đâu