Đưa thừa số ra ngoài dấu căn:
a) \(\sqrt{96.125}\)
b)\(\sqrt{a^4b^5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{96}.\sqrt{125}\)
\(\sqrt{16.6}\sqrt{25.5}\)
\(4.5\sqrt{6.5}\)
\(20\sqrt{30}\)
\(b,\sqrt{a^4b^5}\)
\(a^2b^2\sqrt{b}\)
\(c,\sqrt{a^6b^{11}}\)
\(a^3b^5\sqrt{b}\)
\(d,\sqrt{a^3\left(1-a\right)^4}\)
\(a\left(1-a\right)^2\sqrt{a}\)
a/ \(\sqrt{a^4b^5}=a^2b^2\sqrt{b}\)
b/ \(\sqrt{a^6b^{11}}=a^3b^5\sqrt{b}\)
\(\sqrt{48\cdot45}=12\sqrt{15}\\ \sqrt{225\cdot17}=15\sqrt{17}\\ \sqrt{a^3b^7}=\left|ab^3\right|\sqrt{ab}=ab^3\sqrt{ab}\\ \sqrt{x^5\left(x-3\right)^2}=\left|x^2\left(x-3\right)\right|\sqrt{x}=x^2\left(x-3\right)\sqrt{x}\)
\(\sqrt{48\cdot45}=4\sqrt{3}\cdot3\sqrt{5}=12\sqrt{15}\)
\(\sqrt{225\cdot17}=15\sqrt{17}\)
a/ \(\sqrt{50a}=5\sqrt{2a}\)
b/ \(\sqrt{75x}=5\sqrt{3x}\)
\(\sqrt{18b^3\cdot\left(1-2a\right)^2}\)
\(=3\sqrt{2}\cdot b\sqrt{b}\cdot\left|1-2a\right|\)
\(=3\sqrt{2}\left(2a-1\right)\cdot b\sqrt{b}\)
a: \(a^2\cdot\sqrt{\dfrac{2}{3a}}=a^2\cdot\dfrac{\sqrt{2}}{\sqrt{3}\cdot\sqrt{a}}=\dfrac{a\sqrt{2}}{\sqrt{3}}=\dfrac{a\sqrt{6}}{3}\)
b: \(\dfrac{x-3}{x}\cdot\sqrt{\dfrac{x^3}{9-x^2}}\)
\(=\dfrac{x-3}{x}\cdot\dfrac{x\sqrt{x}}{\sqrt{x-3}\cdot\sqrt{x+3}}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{x-3}}{\sqrt{x+3}}\)
a: ĐKXĐ: 2x-10>=0
=>2x>=10
=>x>=5
b: \(\sqrt{A^2B}=\sqrt{A^2}\cdot\sqrt{B}=\left|A\right|\cdot\sqrt{B}\)
\(\sqrt{72}=\sqrt{36\cdot2}=6\sqrt{2}\)
c: \(A=\sqrt{16}+\sqrt{81}=4+9=13\)
\(B=\sqrt{\dfrac{\left(15\sqrt{5}+5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}}\)
\(=\sqrt{\dfrac{15}{\sqrt{2}}+5\sqrt{20}-3\sqrt{45}}\)
\(=\sqrt{\dfrac{15\sqrt{2}+2\sqrt{5}}{2}}=\sqrt{\dfrac{30\sqrt{2}+4\sqrt{5}}{4}}\)
\(=\dfrac{\sqrt{30\sqrt{2}+4\sqrt{5}}}{2}\)
\(C=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\left(2+\sqrt{3}\right)\)
\(=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}-\left(2+\sqrt{3}\right)+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(=2+\sqrt{3}-2-\sqrt{3}+\sqrt{2}=\sqrt{2}\)
a: \(=\sqrt{2^5\cdot3\cdot5^3}=2^2\cdot5\cdot\sqrt{2\cdot3\cdot5}=20\sqrt{30}\)
b: \(=a^2b^2\sqrt{b}\)