K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

\(\sqrt{96}.\sqrt{125}\)

\(\sqrt{16.6}\sqrt{25.5}\)

\(4.5\sqrt{6.5}\)

\(20\sqrt{30}\)

\(b,\sqrt{a^4b^5}\)

\(a^2b^2\sqrt{b}\)

\(c,\sqrt{a^6b^{11}}\)

\(a^3b^5\sqrt{b}\)

\(d,\sqrt{a^3\left(1-a\right)^4}\)

\(a\left(1-a\right)^2\sqrt{a}\)

20 tháng 7 2018

 a/   \(\sqrt{a^4b^5}=a^2b^2\sqrt{b}\)

b/    \(\sqrt{a^6b^{11}}=a^3b^5\sqrt{b}\)

a: \(=\sqrt{2^5\cdot3\cdot5^3}=2^2\cdot5\cdot\sqrt{2\cdot3\cdot5}=20\sqrt{30}\)

b: \(=a^2b^2\sqrt{b}\)

28 tháng 6 2018

a) \(\sqrt{27\left(9-4\sqrt{5}\right)}=3\sqrt{3\left(\sqrt{5}-2\right)^2}=3\sqrt{3}\left(\sqrt{5}-2\right)=3\sqrt{15}-6\sqrt{3}\)

b) \(\sqrt{a^4b^5}=a^2b^2\sqrt{b}\)

c) \(\sqrt{a^3\left(1-a\right)^4}=a\left(1-a\right)^2\sqrt{a}\)

d) không biết

8 tháng 10 2017

=\(\sqrt{16\cdot6\cdot25\cdot5}\)

=\(\sqrt{4^2\cdot6\cdot5^2\cdot5}\)

=4*5\(\sqrt{6\cdot5}\)

=20\(\sqrt{30}\)

8 tháng 10 2017

b) =\(\sqrt{\left(a^2\right)^2\cdot\left(b^2\right)^2\cdot b}\)

=\(a^2b^2\sqrt{b}\)

19 tháng 10 2021

\(\sqrt{48\cdot45}=12\sqrt{15}\\ \sqrt{225\cdot17}=15\sqrt{17}\\ \sqrt{a^3b^7}=\left|ab^3\right|\sqrt{ab}=ab^3\sqrt{ab}\\ \sqrt{x^5\left(x-3\right)^2}=\left|x^2\left(x-3\right)\right|\sqrt{x}=x^2\left(x-3\right)\sqrt{x}\)

19 tháng 10 2021

\(\sqrt{48\cdot45}=4\sqrt{3}\cdot3\sqrt{5}=12\sqrt{15}\)

\(\sqrt{225\cdot17}=15\sqrt{17}\)

10 tháng 4 2021

a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)

b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)

\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)

( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))

c, Với \(a\ge0;a\ne1\)

\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)

\(\sqrt{18b^3\cdot\left(1-2a\right)^2}\)

\(=3\sqrt{2}\cdot b\sqrt{b}\cdot\left|1-2a\right|\)

\(=3\sqrt{2}\left(2a-1\right)\cdot b\sqrt{b}\)

 

18 tháng 6 2023

\(1,\sqrt{4\left(a-4\right)^2}\left(dkxd:a\ge4\right)\)

\(=\sqrt{4}.\sqrt{\left(a-4\right)^2}\)

\(=\sqrt{2^2}.\left|a-4\right|\)

\(=2\left(a-4\right)\)

\(=2a-8\)

\(2,\sqrt{9\left(b-5\right)^2}\left(dkxd:b< 5\right)\)

\(=\sqrt{9}.\sqrt{\left(b-5\right)^2}\)

\(=\sqrt{3^2}.\left|b-5\right|\)

\(=3\left(-b+5\right)\)

\(=-3b+15\)

 

18 tháng 6 2023

Thế -b+5 khác 5-b à 

Ngô Hải Nam