K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

\(\dfrac{2x}{5}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

\(\Rightarrow\dfrac{2}{5}x=\dfrac{3}{4}y=\dfrac{4}{5}z\)

\(\Rightarrow\dfrac{2}{5}x.\dfrac{1}{12}=\dfrac{3}{4}y.\dfrac{1}{12}=\dfrac{4}{5}z.\dfrac{1}{12}\)

\(\Rightarrow\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}\)

Đặt \(\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=30k\\y=16k\\z=15k\end{matrix}\right.\). Ta có:

\(x+y+z=49\)

\(\Rightarrow30k+16k+15k=49\)

\(\Rightarrow61k=49\)

\(\Rightarrow k=\dfrac{49}{61}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{49}{61}.30=\dfrac{1470}{61}\\y=\dfrac{49}{61}.16=\dfrac{784}{61}\\z=\dfrac{49}{61}.15=\dfrac{735}{61}\end{matrix}\right.\)

QT
Quoc Tran Anh Le
Giáo viên
18 tháng 7 2018

Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) => \(\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{5}\right)^2\)

=> \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}=\dfrac{2x^2+y^2-z^2}{2.9+16-25}=\dfrac{9}{18+16-25}=\dfrac{9}{9}=1\)

=> \(\left\{{}\begin{matrix}\dfrac{x^2}{9}=1\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3\\\dfrac{y^2}{16}=1\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\\\dfrac{z^2}{25}=1\Rightarrow\dfrac{z}{5}=1\Rightarrow z=5\end{matrix}\right.\)

Vậy x = 3, y = 4, z = 5

Đặt x/3=y/4=z/5=k

=>x=3k; y=4k; z=5k

Ta có: \(2x^2+y^2-z^2=9\)

\(\Leftrightarrow18k^2+16k^2-25k^2=9\)

\(\Leftrightarrow9k^2=9\)

\(\Leftrightarrow k^2=1\)

TH1: k=1

=>x=3; y=4; z=5

TH2: k=-1

=>x=-3; y=-4; z=-5

\(\dfrac{2x}{5}=\dfrac{3y}{2}=\dfrac{5z}{7}\)

\(\Leftrightarrow28x=105y=50z\)

hay x/75=y/20=z/42

Đặt x/75=y/20=z/42=k

=>x=75k; y=20k; z=42k

Ta có: xyz=504000

\(\Leftrightarrow k^3\cdot63000=504000\)

\(\Leftrightarrow k=2\)

=>x=150; y=40; z=84

3 tháng 9 2019

em chưa học đến :)

3 tháng 9 2019

ok em

26 tháng 9 2018

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

\(=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)

\(3x=2y\)\(\dfrac{x}{2}=\dfrac{y}{3}\)

\(2z=5x\)\(\dfrac{x}{2}=\dfrac{z}{5}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{9}=\dfrac{5z}{25}\)\(=\dfrac{2x+3y-5z}{6+9-25}=\dfrac{-60}{-10}=6\)

\(\dfrac{x}{2}=6\)\(x=12\)

\(\dfrac{y}{3}=6\)\(y=18\)

\(\dfrac{z}{5}=6\)\(z=30\)

Vậy \(x=12;y=18;z=30\)

29 tháng 12 2022

\(c,\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13y=26\\6x-3y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\6x-3.2=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)

\(d,\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\left(I\right)\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)

\(\left(I\right)\Rightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\3a+4b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\3a+4.\dfrac{2}{7}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{2}{7}\Leftrightarrow x=\dfrac{7}{2}\\\dfrac{1}{y}=\dfrac{9}{7}\Leftrightarrow y=\dfrac{7}{9}\end{matrix}\right.\)

13 tháng 2 2023

c. \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13y=26\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)

hpt \(\Leftrightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\a-b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y}=\dfrac{2}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}\end{matrix}\right.\)

28 tháng 7 2019

\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{20}=\frac{y}{10}\)

\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}\)

\(\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{z}{15}\)

áp dụng tc của dãy tỉ số = nhau

28 tháng 7 2019

=> x/20=y/10; y/10=z/15

=> x/20=y/10=z/15

từ...áp dụng....

đc : (2x-3y+4z)/(40-30+60)=280/70=4

  => x=..

=> y=...

=> z=...

bạn tự làm nha

NV
18 tháng 5 2021

Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại

Với pt sau:

Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm

Với \(x;y;z\ne0\)

Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3

Do đó:

\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)

25 tháng 9 2018

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)=k

<=>\(\dfrac{x}{2}=k\)=> x= 2k

<=>\(\dfrac{y}{3}\)\(=k\) => y= 3k

<=>\(\dfrac{z}{5}=k\) => z= 5k

Thay x= 2k, y=3k, z= 5k vào biểu thức xyz=810

Ta có: 2k . 3k . 5k = 810

<=> \(30k^3\) = 810

<=> \(k^3\) = 27

=> k = \(\sqrt[3]{27}\) = 3

\(\dfrac{x}{2}=3\) => x = 2 . 3 = 6

\(\dfrac{y}{3}=3\) => y = 3 . 3 = 9

\(\dfrac{z}{5}=3\) => z = 3 . 5 = 5

Vậy x = 6, y = 9, z = 15