Tìm x , y , z biết :
\(\begin{cases} \dfrac{2x}{5}=\dfrac{3y}{4}=\dfrac{4z}{5}\\ x+y+z=49 \end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) => \(\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{5}\right)^2\)
=> \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}=\dfrac{2x^2+y^2-z^2}{2.9+16-25}=\dfrac{9}{18+16-25}=\dfrac{9}{9}=1\)
=> \(\left\{{}\begin{matrix}\dfrac{x^2}{9}=1\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3\\\dfrac{y^2}{16}=1\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\\\dfrac{z^2}{25}=1\Rightarrow\dfrac{z}{5}=1\Rightarrow z=5\end{matrix}\right.\)
Vậy x = 3, y = 4, z = 5
Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
Ta có: \(2x^2+y^2-z^2=9\)
\(\Leftrightarrow18k^2+16k^2-25k^2=9\)
\(\Leftrightarrow9k^2=9\)
\(\Leftrightarrow k^2=1\)
TH1: k=1
=>x=3; y=4; z=5
TH2: k=-1
=>x=-3; y=-4; z=-5
\(\dfrac{2x}{5}=\dfrac{3y}{2}=\dfrac{5z}{7}\)
\(\Leftrightarrow28x=105y=50z\)
hay x/75=y/20=z/42
Đặt x/75=y/20=z/42=k
=>x=75k; y=20k; z=42k
Ta có: xyz=504000
\(\Leftrightarrow k^3\cdot63000=504000\)
\(\Leftrightarrow k=2\)
=>x=150; y=40; z=84
\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)
\(=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)
\(=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)
⇒\(3x=2y\)⇒\(\dfrac{x}{2}=\dfrac{y}{3}\)
⇒\(2z=5x\)⇒\(\dfrac{x}{2}=\dfrac{z}{5}\)
⇒\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{9}=\dfrac{5z}{25}\)\(=\dfrac{2x+3y-5z}{6+9-25}=\dfrac{-60}{-10}=6\)
⇒\(\dfrac{x}{2}=6\)⇒\(x=12\)
⇒\(\dfrac{y}{3}=6\)⇒\(y=18\)
⇒\(\dfrac{z}{5}=6\)⇒\(z=30\)
Vậy \(x=12;y=18;z=30\)
\(c,\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}13y=26\\6x-3y=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\6x-3.2=-24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\left(I\right)\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)
\(\left(I\right)\Rightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\3a+4b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\3a+4.\dfrac{2}{7}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{2}{7}\Leftrightarrow x=\dfrac{7}{2}\\\dfrac{1}{y}=\dfrac{9}{7}\Leftrightarrow y=\dfrac{7}{9}\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13y=26\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\a-b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y}=\dfrac{2}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}\end{matrix}\right.\)
\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{20}=\frac{y}{10}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{z}{15}\)
áp dụng tc của dãy tỉ số = nhau
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)=k
<=>\(\dfrac{x}{2}=k\)=> x= 2k
<=>\(\dfrac{y}{3}\)\(=k\) => y= 3k
<=>\(\dfrac{z}{5}=k\) => z= 5k
Thay x= 2k, y=3k, z= 5k vào biểu thức xyz=810
Ta có: 2k . 3k . 5k = 810
<=> \(30k^3\) = 810
<=> \(k^3\) = 27
=> k = \(\sqrt[3]{27}\) = 3
\(\dfrac{x}{2}=3\) => x = 2 . 3 = 6
\(\dfrac{y}{3}=3\) => y = 3 . 3 = 9
\(\dfrac{z}{5}=3\) => z = 3 . 5 = 5
Vậy x = 6, y = 9, z = 15
\(\dfrac{2x}{5}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
\(\Rightarrow\dfrac{2}{5}x=\dfrac{3}{4}y=\dfrac{4}{5}z\)
\(\Rightarrow\dfrac{2}{5}x.\dfrac{1}{12}=\dfrac{3}{4}y.\dfrac{1}{12}=\dfrac{4}{5}z.\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}\)
Đặt \(\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=30k\\y=16k\\z=15k\end{matrix}\right.\). Ta có:
\(x+y+z=49\)
\(\Rightarrow30k+16k+15k=49\)
\(\Rightarrow61k=49\)
\(\Rightarrow k=\dfrac{49}{61}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{49}{61}.30=\dfrac{1470}{61}\\y=\dfrac{49}{61}.16=\dfrac{784}{61}\\z=\dfrac{49}{61}.15=\dfrac{735}{61}\end{matrix}\right.\)