K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2022

\(c,\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13y=26\\6x-3y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\6x-3.2=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)

\(d,\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\left(I\right)\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)

\(\left(I\right)\Rightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\3a+4b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\3a+4.\dfrac{2}{7}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{2}{7}\Leftrightarrow x=\dfrac{7}{2}\\\dfrac{1}{y}=\dfrac{9}{7}\Leftrightarrow y=\dfrac{7}{9}\end{matrix}\right.\)

13 tháng 2 2023

c. \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+10y=2\\6x-3y=-24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13y=26\\2x-y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)

d. \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\left(x\ne0\right)\\\dfrac{1}{y}=b\left(y\ne0\right)\end{matrix}\right.\)

hpt \(\Leftrightarrow\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-3b=3\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-2\\a-b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{2}{7}\\a=\dfrac{9}{7}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y}=\dfrac{2}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}\end{matrix}\right.\)

1 tháng 6 2016

cau a , xet phuong trinh 1 la 8(x+y) =x^2 +2y^2 + 3xy

ta co , 8(x+y) = x^2 +2xy+y^2 +y^2+xy

    8(x+y)= (x+y)^2+y(x+y)

 (x+y)((x+y)+y-8)=0  xét (x+y)=0 và (x+2y-8)=0 . xét từng trường hợp rồi thế vào phương trình 2 rồi tự giải lột nhe

1 tháng 6 2016

cau 2 de kho hieu the , viet lai xem nao sao 2 phong trinh ma bang mot bieu thuc thoi ak

30 tháng 3 2016

Từ phương trình thứ nhất ta có : \(y=x-2\)

Thay vào phương trình thứ 2, ta được :

\(3^{x^2+x-2}=3^{-2}\)

Do đó

\(x^2+x-2=-2\) nên \(x=0\) hoặc \(x=-1\) 

Suy ra \(y=-2\) hoặc \(y=-3\)

Vậy hệ có 2 nghiệm là \(\left(0;-2\right)\) và \(\left(-1;-3\right)\)

30 tháng 3 2016

Trừ hai phương trình theo vế, ta được :

\(2^x+3x=2^y+3y\)

Xét hàm số : \(f\left(t\right)=2^t+3t\)

Dễ thấy f(t) đồng biến trên R

Do đó, từ \(f\left(x\right)=f\left(y\right)\) suy ra x=y. 

Thay vào phương trình thứ nhất la được :

\(2^x=3-x\)

Phương trình này có nghiệm duy nhất x=1

Vậy hệ có nghiệm duy nhất (1;1)

30 tháng 3 2016

Điều kiện x, y dương. Hệ phương trình tương đương với hệ :

\(\begin{cases}\log_2\left(x+3\right)=2\left(1+\log_3y\right)\\2\left(1+\log_3x\right)=\log_2\left(y+3\right)\end{cases}\) (*)

Cộng vế với vế 2 phương trình của hệ (*) ta có :

\(\log_2\left(x+3\right)+2\log_3x=\log_2\left(y+3\right)+2\log_3y\)

Xét hàm số :

\(f\left(t\right)=\log_2\left(t+3\right)+2\log_3t\) trên miền \(\left(0;+\infty\right)\).

Dễ thấy hàm số luôn đồng biến trên  \(\left(0;+\infty\right)\)., mà \(f\left(x\right)=f\left(y\right)\) nên \(x=y\).

Thay vào một trong hai phương trình của hệ (*), ta được 

\(\log_2\left(x+3\right)=2\left(1+\log_3x\right)\)

 

hay

\(x+3=2^{2\left(1+\log_3x\right)}=4.2^{\log_3x^2}=4.2^{\log_32.\log_2x^2}=4\left(2^{\log_2x^2}\right)^{\log_32}\)

\(\Leftrightarrow x+3=4.x\log^{\log_34}\)

\(\Leftrightarrow x^{1-\log_34}+3.x^{-\log_34}=4\) (**)

Xét 

\(g\left(x\right)=x^{1-\log_34}+3.x^{-\log_34}\) trên khoảng( \(0:+\infty\)), ta có :

\(g'\left(x\right)=\left(1-\log_34\right)x^{-\log_34}-3.\log_34x^{-1-\log_34}\)

Thấy ngay \(g'\left(x\right)<0\) với mọi \(x\in\left(0;+\infty\right)\), do đó \(g\left(x\right)\)nghịch biến trên \(\left(0;+\infty\right)\)

Mặt khác \(g\left(1\right)=4\) vậy x=1 là nghiệm duy nhất của phương trình (**)

Hệ phương trình đã cho có nghiệm duy nhất là (1;1)

19 tháng 9 2016

\(\begin{cases}\sqrt{x-1}-\sqrt{y}=8-x^3\left(1\right)\\\left(x-1\right)^4=y\left(2\right)\end{cases}\)

Đk: \(x\ge1;y\ge0\)

Thay (2) vào (1) ta đc:

\(\sqrt{x-1}-\left(x-1\right)^2=-x^3+8\)

\(\Leftrightarrow\sqrt{x-1}-1=-x^3+x^2-2x+8\)

\(\Leftrightarrow\sqrt{x-1}-1\cdot\frac{\sqrt{x-1}+1}{\sqrt{x-1}+1}=\left(-x^3+2x^2\right)-\left(x^2-2x\right)-\left(4x-8\right)\)

\(\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}=\frac{x-2}{-x^2-x-4}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\\sqrt{x-1}+1=-x^2-x-4\left(3\right)\end{array}\right.\) 

(3) vô nghiệm do \(VT>0;VP< 0\) với mọi x

\(\Leftrightarrow x=2\left(tm\left(x\ge1\right)\right)\Rightarrow y=1\)

Vậy hệ pt đã cho có nghiệm x = 2; y = 1 

 

 

 

 

 

19 tháng 9 2016

cảm ơn bn nhìu nhé....

17 tháng 6 2016

bạn tách từng câu ra mik suy nghĩ từng câu

17 tháng 6 2016

bạn trả lời từng câu cũng được mà :) làm được câu nào thì giúp mình nhé. Tks!

 

30 tháng 3 2016

Điều kiện x,y dương.

Từ phương trình thứ nhất suy ra 

\(y=30-x\)

Thế vào phương trình thứ 2 ta được :

\(\ln x+\ln\left(30-x\right)=3\ln6\)

\(\Leftrightarrow\ln x\left(30-x\right)=\ln6^3\)

Suy ra x=18 hoặc x=12

Từ đó suy ra hệ có 2 nghiệm

(18;12) và (12;18)