Chứng mỉnh rằng
\(\sqrt{5\sqrt{5\sqrt{5...\sqrt{5\sqrt{5}}}}}+\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}< 8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10
câu đầu có \(3-12\sqrt{6}< 0\) nên không căn được nên đề bạn sai
\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{4^2-2.4.\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2.\sqrt{15}.3+3^2}\)
\(=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}=\left|4-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
\(=4-\sqrt{15}+\sqrt{15}-3=1\)
\(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}=\sqrt{49-20\sqrt{6}}-\sqrt{49+20\sqrt{6}}\)
\(=\sqrt{5^2-2.5.2\sqrt{6}+\left(2\sqrt{6}\right)^2}-\sqrt{5^2+2.5.4\sqrt{6}+\left(2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}=\left|5-2\sqrt{6}\right|-\left|5+2\sqrt{6}\right|\)
\(=5-2\sqrt{6}-5-2\sqrt{6}=-4\sqrt{6}\)
\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=4-\sqrt{15}+\sqrt{15}-3\)
=1
\(\dfrac{15}{\sqrt{6}-1}+\dfrac{8}{\sqrt{6}+2}+\dfrac{6}{3-\sqrt{6}}-9\sqrt{6}\)
\(=\dfrac{15\left(\sqrt{6}+1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{8\left(\sqrt{6}-2\right)}{\left(\sqrt{6}+2\right)\left(\sqrt{6}-2\right)}+\dfrac{6\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}-9\sqrt{6}\)
\(=\dfrac{15\left(\sqrt{6}+1\right)}{6-1}+\dfrac{8\left(\sqrt{6}-2\right)}{6-4}+\dfrac{6\left(3+\sqrt{6}\right)}{9-6}-9\sqrt{6}\)
\(=3\left(\sqrt{6}+1\right)+4\left(\sqrt{6}-2\right)+2\left(3+\sqrt{6}\right)-9\sqrt{6}\)
\(=3\sqrt{6}+3+4\sqrt{6}-8+6+2\sqrt{6}-9\sqrt{6}\)
\(=9\sqrt{6}+1-9\sqrt{6}\)
\(=1\)
\(\sqrt{\left(\sqrt{5}-1\right)\sqrt{14-6\sqrt{5}}}\)
\(=\sqrt{\left(\sqrt{5}-1\right)\sqrt{9-6\sqrt{5}+5}}\)
\(=\sqrt{\left(\sqrt{5}-1\right)\sqrt{3^2-2\cdot3\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}}\)
\(=\sqrt{\left(\sqrt{5}-1\right)\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\sqrt{\left(\sqrt{5}-1\right)\left|3-\sqrt{5}\right|}\)
\(=\sqrt{\left(\sqrt{5}-1\right)\left(3-\sqrt{5}\right)}\)
\(=\sqrt{3\sqrt{5}-5-3+\sqrt{5}}\)
\(=\sqrt{4\sqrt{5}-8}\)
\(=\sqrt{4\left(\sqrt{5}-2\right)}\)
\(=2\sqrt{\sqrt{5}-2}\)
a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)
\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
\(\sqrt{5\sqrt{5\sqrt{5...\sqrt{5\sqrt{5}}}}}=x\Rightarrow x^2=5x\Rightarrow x=5\)(n số 5)
Vậy \(\sqrt{5\sqrt{5\sqrt{5...\sqrt{5\sqrt{5}}}}}=5\) khi \(n\rightarrow\infty\)
\(\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}=x\\ \Leftrightarrow x^2=6+\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}\\ \Leftrightarrow x^2=6+x\Rightarrow x=3\)(n số 6)
\(\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}=3\) khi \(n\rightarrow\infty\)
Vậy S < 8