Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}=6\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^2}\)
\(=5-2\sqrt{6}+5+2\sqrt{6}=10\)
\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}=2\sqrt{5}+4\sqrt{2}\)
a: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
b: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=3-2\sqrt{2}+3+2\sqrt{2}\)
=6
c: Ta có: \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)
\(=5-2\sqrt{6}+5+2\sqrt{6}\)
=10
d: Ta có: \(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{13-4\sqrt{10}}+\sqrt{53+4\sqrt{90}}\)
\(=2\sqrt{2}-\sqrt{5}+3\sqrt{5}+2\sqrt{2}\)
\(=2\sqrt{5}+4\sqrt{2}\)
32, \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
=\(\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{33-2.3.2\sqrt{6}}\)
=\(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{24-2.3.2\sqrt{6}+9}\)
=\(\left|3-\sqrt{6}\right|+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
=\(3-\sqrt{6}+\left|2\sqrt{6}-3\right|\)=\(3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
33, \(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}=\left|\sqrt{5}-1\right|+\sqrt{5}+1=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)
34, \(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
=\(\sqrt{8-2.\sqrt{3}.\sqrt{5}}-\sqrt{23-2.2.\sqrt{5}.\sqrt{3}}\)
=\(\sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}.\sqrt{3}+3}\)
=\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)
=\(\left|\sqrt{5}-\sqrt{3}\right|-\left|2\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}-2\sqrt{5}+\sqrt{3}=-\sqrt{5}\)
35,\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
=\(\sqrt{16-2.4.\sqrt{15}+15}+\sqrt{15-2.3.\sqrt{15}+9}\)
=\(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)
=\(\left|4-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
=\(4-\sqrt{15}+\sqrt{15}-3\)
=1
36, \(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}\)
=\(\sqrt{49-2.5.\sqrt{24}}-\sqrt{49+2.5\sqrt{24}}=\sqrt{25-2.5.\sqrt{24}+24}-\sqrt{25+2.5.\sqrt{24}+24}=\sqrt{\left(5-\sqrt{24}\right)^2}-\sqrt{\left(5+\sqrt{24}\right)^2}\)
=\(\left|5-\sqrt{24}\right|-\left|5+\sqrt{24}\right|=5-\sqrt{24}-5-\sqrt{24}=-2\sqrt{24}\)
37, \(\sqrt{3+2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
=\(\left|\sqrt{2}+1\right|+\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{2}+1+\sqrt{3}-\sqrt{2}=\sqrt{3}+1\)
a, \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
= \(\sqrt{3^2-2.3.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{6^2-2.6.\sqrt{6}+\left(\sqrt{6}\right)^2}\)
= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(6-\sqrt{6}\right)^2}\)
= \(\left|3-\sqrt{6}\right|+\left|6-\sqrt{6}\right|\)
= \(3-\sqrt{6}+6-\sqrt{6}\)
= \(9-2\sqrt{6}\)
b. Đặt B = \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
Nhận xét : B > 0 , bình phương hai vế ta được :
\(B^2=\left(\sqrt{17-3\sqrt{32}}\right)^2+\left(\sqrt{17+3\sqrt{32}}\right)^2\)
\(B^2=17-3\sqrt{32}+17+3\sqrt{32}+2\sqrt{\left(17-3\sqrt{32}\right)\left(17+3\sqrt{32}\right)}\)
\(B^2=34+2\sqrt{17^2-\left(3\sqrt{32}\right)^2}\)
\(B^2=34+2\sqrt{289-288}\)
\(B^2=34+2=36\)
=> \(B=\pm\sqrt{36}\) mà B > 0 nên \(B=\sqrt{36}=6\)
c, Đặt C = \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)
Nhận xét : C > 0 , bình phương hai vế ta đươc :
\(C^2=\left(\sqrt{49-5\sqrt{96}}\right)^2+\left(\sqrt{49+5\sqrt{96}}\right)^2\)
\(C^2=49-5\sqrt{96}+49+5\sqrt{96}+2\sqrt{\left(49-5\sqrt{96}\right)\left(49+5\sqrt{96}\right)}\)
\(C^2=98+2\sqrt{49^2-\left(5\sqrt{96}\right)^2}\)
\(C^2=98+2\sqrt{2401-2400}\)
\(C^2=98+2=100\)
=> \(C=\pm\sqrt{100}\) mà C > 0 nên \(C=\sqrt{100}=10\)
a) Ta có: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot3\sqrt{3}\cdot2\sqrt{2}+8}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|3\sqrt{3}-2\sqrt{2}\right|\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)(Vì \(\left\{{}\begin{matrix}3>\sqrt{6}\\3\sqrt{3}>2\sqrt{2}\end{matrix}\right.\))
b) Ta có: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(=\frac{\sqrt{34-6\sqrt{32}}+\sqrt{34+6\sqrt{32}}}{\sqrt{2}}\)
\(=\frac{\sqrt{18-2\cdot3\sqrt{2}\cdot4+16}+\sqrt{18+2\cdot3\sqrt{2}\cdot4+16}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(3\sqrt{2}-4\right)^2}+\sqrt{\left(3\sqrt{2}+4\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|3\sqrt{2}-4\right|+\left|3\sqrt{2}+4\right|}{\sqrt{2}}\)
\(=\frac{3\sqrt{2}-4+3\sqrt{2}+4}{\sqrt{2}}\)(Vì \(3\sqrt{2}>4>0\))
\(=\frac{6\sqrt{2}}{\sqrt{2}}=6\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\sqrt{25-2\cdot5\cdot2\sqrt{6}+24}+\sqrt{25-2\cdot5\cdot2\sqrt{6}+24}=\sqrt{\left(5+2\sqrt{6}\right)^2}+\sqrt{\left(5-2\sqrt{6}\right)^2}=5+2\sqrt{6}+5-2\sqrt{6}=10\) ---
\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{8-2\sqrt{5}\cdot\sqrt{8}+5}+\sqrt{45+2\cdot3\sqrt{5}\cdot\sqrt{8}+8}=\sqrt{\left(\sqrt{8}-\sqrt{5}\right)^2}+\sqrt{\left(3\sqrt{5}+\sqrt{8}\right)^2}=\sqrt{8}-\sqrt{5}+3\sqrt{5}+\sqrt{8}=2\sqrt{8}+2\sqrt{5}\)
---
\(\sqrt{11-6\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{9-2\cdot3\cdot\sqrt{2}+2}+\sqrt{2-2\sqrt{2}+1}=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}=3-\sqrt{2}+\sqrt{2}-1=2\)
---
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot\sqrt{27}\cdot\sqrt{8}+8}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
---
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}+\sqrt{9+2\cdot2\cdot2\sqrt{2}+8}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}=3-2\sqrt{2}+3+2\sqrt{2}=6\)
---
\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)
\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)
\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)
\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ
\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)
\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)
\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)
\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)
#Học tốt ạ
câu đầu có \(3-12\sqrt{6}< 0\) nên không căn được nên đề bạn sai
\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{4^2-2.4.\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2.\sqrt{15}.3+3^2}\)
\(=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}=\left|4-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)
\(=4-\sqrt{15}+\sqrt{15}-3=1\)
\(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}=\sqrt{49-20\sqrt{6}}-\sqrt{49+20\sqrt{6}}\)
\(=\sqrt{5^2-2.5.2\sqrt{6}+\left(2\sqrt{6}\right)^2}-\sqrt{5^2+2.5.4\sqrt{6}+\left(2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(5+2\sqrt{6}\right)^2}=\left|5-2\sqrt{6}\right|-\left|5+2\sqrt{6}\right|\)
\(=5-2\sqrt{6}-5-2\sqrt{6}=-4\sqrt{6}\)
\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=4-\sqrt{15}+\sqrt{15}-3\)
=1