giải bài này gấp
cho f(x)=x^3-3x^2+3x+3 cm f(2018/2017)< f(2017/2016)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy: \(f(x)=\frac{x^3}{1-3x+3x^2}\Rightarrow f(1-x)=\frac{(1-x)^3}{1-3(1-x)+3(1-x)^2}=\frac{(1-x)^3}{3x^2-3x+1}\)
\(\Rightarrow f(x)+f(1-x)=\frac{x^3}{1-3x+3x^2}+\frac{(1-x)^3}{3x^2-3x+1}=\frac{x^3+(1-x)^3}{3x^2-3x+1}=1\)
Do đó:
\(f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=1\)
\(f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)=1\)
............
\(f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)=1\)
Cộng theo vế:
\(\Rightarrow A=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+f\left(\frac{3}{2017}\right)+...f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)\)
\(=\underbrace{1+1+1...+1}_{1008}=1008\)
Ta sẽ xét tính biến thiên của hàm số :
Ta có \(f\left(x\right)=\left(x^3-3x^2+3x-1\right)+4=\left(x-1\right)^3+4\)
\(f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)=\left(\frac{2017}{2016}-1\right)^3-\left(\frac{2016}{2015}-1\right)^3\)
\(=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left[\left(\frac{2017}{2016}-1\right)^2+\left(\frac{2016}{2015}-1\right)^2+\left(\frac{2017}{2016}-1\right)\left(\frac{2016}{2015}-1\right)\right]\)
\(=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left(\frac{1}{2016^2}+\frac{1}{2015^2}+\frac{1}{2016}.\frac{1}{2015}\right)< 0\)
\(\Rightarrow f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)< 0\Rightarrow f\left(\frac{2017}{2016}\right)< f\left(\frac{2016}{2015}\right)\)
Ta sẽ xét tính biến thiên của hàm số :
Ta có f\left(x\right)=\left(x^3-3x^2+3x-1\right)+4=\left(x-1\right)^3+4f(x)=(x3−3x2+3x−1)+4=(x−1)3+4
f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)=\left(\frac{2017}{2016}-1\right)^3-\left(\frac{2016}{2015}-1\right)^3f(20162017)−f(20152016)=(20162017−1)3−(20152016−1)3
=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left[\left(\frac{2017}{2016}-1\right)^2+\left(\frac{2016}{2015}-1\right)^2+\left(\frac{2017}{2016}-1\right)\left(\frac{2016}{2015}-1\right)\right]=(20161−20151)[(20162017−1)2+(20152016−1)2+(20162017−1)(20152016−1)]
=\left(\frac{1}{2016}-\frac{1}{2015}\right)\left(\frac{1}{2016^2}+\frac{1}{2015^2}+\frac{1}{2016}.\frac{1}{2015}\right)< 0=(20161−20151)(201621+201521+20161.20151)<0
\Rightarrow f\left(\frac{2017}{2016}\right)-f\left(\frac{2016}{2015}\right)< 0\Rightarrow f\left(\frac{2017}{2016}\right)< f\left(\frac{2016}{2015}\right)⇒f(20162017)−f(20152016)<0⇒f(20162017)<f(20152016)
Ta có: \(\frac{1}{f\left(x\right)}-1=\frac{\left(1-x\right)^3}{x^3}\)
Xét hai số a, b dương sao cho \(a+b=1\)
Ta có: \(\hept{\begin{cases}\frac{1}{f\left(a\right)}-1=\frac{\left(1-a\right)^3}{a^3}\\\frac{1}{f\left(b\right)}-1=\frac{\left(1-b\right)^3}{b^3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1-f\left(a\right)}{f\left(a\right)}=\frac{\left(1-a\right)^3}{a^3}\\\frac{1-f\left(b\right)}{f\left(b\right)}=\frac{a^3}{\left(1-a\right)^3}\end{cases}}\)
\(\Rightarrow\frac{1-f\left(a\right)}{f\left(a\right)}.\frac{1-f\left(b\right)}{f\left(b\right)}=1\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=1\)
Áp dụng vào bài toán ta được
\(f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+...+f\left(\frac{2016}{2017}\right)\)
\(=\left[f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)\right]+\left[f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)\right]+...+\left[f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)\right]\)
\(=1+1+...+1=1008\)
Câu 2/
\(\hept{\begin{cases}2x^2-y^2+xy+3y=2\left(1\right)\\x^2-y^2=3\left(2\right)\end{cases}}\)
Ta có:
\(\left(1\right)\Leftrightarrow\left(x+y-1\right)\left(2x-y+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1-x\\y=2x+2\end{cases}}\)
Thế ngược lại (1) giải tiếp sẽ ra nghiệm.
a)\(\left(3x^2+x-2016\right)^2+4\left(x^2+506x-2017\right)^2=4\left(3x^2+x-2016\right)\cdot\left(x^2+506x-2017\right)\)
\(\Leftrightarrow\left(3x^2+x-2016\right)^2-4\left(3x^2+x-2016\right)\left(x^2+506x-2017\right)+4\left(x^2+506x-2017\right)^2=0\)
\(\Leftrightarrow\left(3x^2+x-2016-2x^2-1012x+4034\right)^2=0\)
\(\Leftrightarrow x^2-1011x+2018=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1009\end{matrix}\right.\)
Xét đa thức \(F\left(x\right)=ax^2+bx+c\)
\(F\left(0\right)=c=2016\)
\(F\left(1\right)=a+b+c=2017\Rightarrow a+b=1\) (1)
\(F\left(-1\right)=a-b+c=2018\Rightarrow a-b=2\) (2)
Từ (1), (2)
\(\Rightarrow\hept{\begin{cases}a+b-a+b=-1\\a+b+a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}2b=-1\\2a=3\end{cases}}\Rightarrow\hept{\begin{cases}b=-0,5\\a=1,5\end{cases}}\)
\(\Rightarrow F\left(2\right)=1,5.2^2-0,5.2+2016=2021\)
Vậy \(F\left(2\right)=2021\).
\(f\left(x\right)=x^3-3x^2+3x-1+4=\left(x-1\right)^3+4\)
Lấy x1,x2 thuộc R sao cho x1<x2
\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\left(x_1-1\right)^3-\left(x_2-1\right)^3}{x_1-x_2}\)
\(=\dfrac{\left(x_1-1-x_2+1\right)\left[\left(x_1-1\right)^2+\left(x_1-1\right)\left(x_2-1\right)+\left(x_2-1\right)^2\right]}{x_1-x_2}\)
\(=\left(x_1-1\right)^2+\left(x_1-1\right)\left(x_2-1\right)+\left(x_2-1\right)^2>0\)
=>A>0
Do đó: Hàm số đồng biến với x thuộc R
Do đó: \(f\left(\dfrac{2018}{2017}\right)< f\left(\dfrac{2017}{2016}\right)\)