K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

Ta có: 23a + 23b chia hết cho 23  

=> 7a + 3b + 16a + 20b chia hết cho 23  

=> 7a + 3b + 4(4a + 5b) chia hết cho 23  

Do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23  

Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23

30 tháng 12 2015

Ta có: 23a + 23b chia hết cho 23  

=> 7a + 3b + 16a + 20b chia hết cho 23  

=> 7a + 3b + 4(4a + 5b) chia hết cho 23  

Do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23  

Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23

****

11 tháng 11 2019

Ta có

7a + 3b chia hết cho 23 => 6(7a + 3b) = 42a + 18b chia hết cho 23

42a + 18b + 4a + 5b = 46a + 23b = 23(2a + b) chia hết cho 23

Mà 42a+18b chia hết cho 23 nên 4a+5b cũng chia hết cho 23 (dpcm)

Giả sử  \(4a+5b\)chia hết cho 23 (1). Thế thì : 
(1)=> (7a+3b)+(4a+5b) = (11a + 8b) chia hết cho 23 (2) 
(1) => [(7a+3b-(4a+ 5b) = (3a-2b) chia hết cho 23 => (12a-8b) chia hết cho 23 (3) 
Từ (2) + (3) = 23a chia hết cho 23 là điều hiển nhiên. 
Vậy điều ta giả sử là đúng , tức là : \(4a+5b\) chia hết cho 23

26 tháng 4 2016

Giả sử  4a+5b chia hết cho 23 (1). Thế thì : 
(1)=> (7a+3b)+(4a+5b) = (11a + 8b) chia hết cho 23 (2) 
(1) => [(7a+3b-(4a+ 5b) = (3a-2b) chia hết cho 23 => (12a-8b) chia hết cho 23 (3) 
Từ (2) + (3) = 23a chia hết cho 23 là điều hiển nhiên. 
Vậy điều ta giả sử là đúng , tức là : 4a+5b chia hết cho 23

22 tháng 11 2019

Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23

16a+20b+7a+3b = 23a+23b chia hết cho 23

mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)

30 tháng 6 2017

nếu 4a + 5b chia hết cho 23 (1)


(1) \(\Rightarrow\) (7a + 3b) + (4a + 5b) = (11a + 8b) chia hết cho 23 (2)


(1) \(\Rightarrow\) (7a + 3b) - (4a + 5b) = (3a - 2b) chia hết cho 23

\(\Rightarrow\) (3a - 2b).4 chia hết cho 23 \(\Leftrightarrow\) (12a - 8b) chia hết cho 23

(3) lấy (2) + (3) = 23a chia hết cho 23 (đúng \(\forall a\))


Vậy 4a + 5b chia hết cho 23

30 tháng 6 2017

Giải:

Ta có: \(7a+3b⋮23\Rightarrow6\left(7a+3b\right)⋮23\)

\(\Rightarrow6\left(7a+3b\right)+\left(4a+5b\right)⋮23\)

\(\Rightarrow46a+23b⋮23\Rightarrow23\left(2a+b\right)⋮23\) (Đúng)

Vậy \(4a+5b⋮23\) (Đpcm)

21 tháng 10 2016

Ta có: 23a + 23b chia hết cho 23
=>\(7a+3b+16a+20b\) chia hết cho 23 
=>\(7a+3b+4\left(4a+5b\right)\)chia hết cho 23 

Theo đề bài: 7a + 3b chia hết cho 23

=> 4(4a + 5b) chia hết cho 23

Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23 (đpcm)

21 tháng 1 2017
xét hiệu: 7(4a+5b)-4(7a+3b) =28a+35b-28a-12b =(28a-28a)+(35b-12b) =23b vì 23 chia hết 23 suy ra 23b chia hết 23 suy ra 7(4a+5b)-4(7a+3b) chia hết cho 23 (1) mà 7a+3b chia hết 23 suy ra 4(7a+3b) chia hết 23 suy ra 4a+5b chia hết 23 k cho tui với
6 tháng 1 2016

Xet bieu thuc: 6(7a+3b)+(4a+5b)

=42a+18b+4a+5b

=46a+23b

=23(2a+b)

Neu 6(7a+3b) chia het cho 23 thi 4a+5b chia het cho 23:

Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 6(7a+3b) chia het cho 23 suy ra 4a+5b chia het cho 23

Neu 4a+5b chia het cho 23 thi 6(7a+3b) chia het cho 23:

Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 4a+5b chia het cho 23 suy ra 6(7a+3b) chia het cho 23