So sánh: S = 21 + 22 + 23 ..................210. SO SÁNH VỚI 5x92
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)
\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
HT
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
- Hình 20 là công cụ chặt ở Nậm Tun (Lai Châu) là chiếc rìu bằng hòn cuội được ghè đẽo thô sơ,có hình thù rõ ràng.
- Hình 21, 22, 23 : hình thù rõ ràng hơn, lưỡi rìu sắc hơn vì thế lao động có hiệu quả hơn.
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100
\(S=1+2+2^2+2^3+...+2^9\)
Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)
\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\)
Vậy \(S< 5.2^8\)
\(#Tuyết\)
2S=2+2^2+...+2^10
=>S=2^10-1=1023
5*2^8=256*5=1280
=>S<5*2^8
Vì: \(\frac{3}{21}=\frac{3}{21}\)
\(\frac{3}{22}\) < \(\frac{3}{21}\)
\(\frac{3}{23}\) < \(\frac{3}{21}\)
\(\frac{3}{24}\)<\(\frac{3}{21}\)
\(\frac{3}{25}\)< \(\frac{3}{21}\)
.....
\(\frac{2}{29}\)<\(\frac{3}{21}\)
\(\frac{2}{30}\)<\(\frac{3}{21}\)
Nên \(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{21}.10\)
Ta có: \(\frac{3}{21}.10\) = \(\frac{10}{7}\)
Mà \(\frac{10}{7}\) < \(\frac{3}{2}\)
=>\(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{2}\)
Vậy E < M
Ta có: 21 + 22 + 23+.....210
= 2+4+6+.............+1024
Số số hạng của dãy trên là: (1024-2):2+1 = 512( số)
Tổng trên là: ( 1024+2)x 512: 2= 262656
Còn 5x92 = 405
Nên suy ra 262656> 405
Vậy 21+22+23+..........210> 5x92