I là một điểm nằm trong hình chữ nhật ABCD. IA = 13cm, IB = 8cm và IC = 4cm. ID = ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông IBC có:
\(BC^2=IB^2+IC^2\)
\(\Leftrightarrow BC=\sqrt{IB^2+IC^2}=\sqrt{80}\) cm
Vì ABCD là hình chữ nhật
\(\Rightarrow AD=BC=\sqrt{80}\)
Xét tam giác vuông AID có:
\(AD^2=AI^2+ID^2\)
\(\Rightarrow ID8=\sqrt{AD^2-AI^2}=8cm\)
*Không vẽ được hình, bạn thông cảm*
Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)
Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)
Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)
Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)
Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ICD}=\widehat{IDC}\)
Xét ΔIDC có \(\widehat{ICD}=\widehat{IDC}\)
nên ΔIDC cân tại I
Suy ra: IC=ID
Ta có: IC+IA=AC
ID+IB=BD
mà AC=BD
và IC=ID
nên IA=IB
Xét △ADC và △BDC có
BC = BD
DC chung
AD = BC
⇒ △ ADC = △ BCD ( c - c - c )
⇒ \(\widehat{BDC}=\widehat{ACD}\)
⇒ △ IDC cân tại I
⇒ ID = IC ( đpcm )
Mà AC = BD
⇒ IA = IB ( đpcm )
mình dịch ra cho:cho hình chữ nhật abcd và có điểm I nằm trong hình chữ nhật ấy sao cho ia=13, ib=8, ic=4 tính id
mình mới lớp 7 thôi nên không biết làm
ta có \(AB^2=CD^2\Leftrightarrow IA^2+IB^2=ID^2+IC^2\)
Thay số vào ta tính được \(ID=\sqrt{217}\)