Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Trong (O) có CD là dây cung không đi qua (O) và H là trung điểm CD
\(\Rightarrow OH\bot CD\Rightarrow\angle OHI=90=\angle OAI\Rightarrow OHAI\) nội tiếp
Ta có: \(\angle OAI+\angle OBI=90+90=180\Rightarrow OAIB\) nội tiếp
\(\Rightarrow O,H,A,B,I\) cùng thuộc 1 đường tròn
2) Vì IA,IB là tiếp tuyến \(\Rightarrow IB=IA=OA=OB\Rightarrow AOBI\) là hình thoi
có \(\angle OAI=90\Rightarrow AOBI\) là hình vuông
AB cắt OI tại E.Dễ chứng minh được E là trung điểm AB
Ta có: \(AB=\sqrt{OA^2+OB^2}=\sqrt{2}R\Rightarrow AE=\dfrac{\sqrt{2}}{2}R\)
\(\Rightarrow\) bán kính của (AOBI) là \(\dfrac{\sqrt{2}}{2}R\)
\(\Rightarrow\) diện tích của (AOBI) là \(\left(\dfrac{\sqrt{2}}{2}R\right)^2.\pi=\dfrac{1}{2}\pi R^2\)
3) OH cắt AB tại F
Ta có: \(\angle IEF=\angle IHF=90\Rightarrow IEHF\) nội tiếp
\(\Rightarrow OH.OF=OE.OI\) (cái này chỉ là đồng dạng thôi,bạn tự chứng minh nha)
mà \(OE.OI=OB^2=R^2\Rightarrow OF=\dfrac{R^2}{OH}\)
mà H cố định \(\Rightarrow\) F cố định \(\Rightarrow AB\) đi qua điểm F cố định
a: Xéttứ giác OAIB có
góc OAI+góc OBI=180 độ
=>OAIB là tứ giác nội tiếp đường tròn đường kính OI(1)
ΔOHI vuông tại H
nên H nằm trên đường tròn đường kính OI(2)
Từ (1), (2) suy ra O,A,I,B,H cùng nằm trên 1 đường tròn
b: Xet (O) có
IA,IB là tiếp tuyến
nên IA=IB
mà OA=OB
nên OI là trung trực của AB
=>OI vuông góc AB tại P
=>OP*OI=OA^2=OD^2
a) Xét tứ giác IAOB có
\(\widehat{IAO}\) và \(\widehat{IBO}\) là hai góc đối
\(\widehat{IAO}+\widehat{IBO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: IAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{IAC}\) là góc tạo bởi tiếp tuyến AI và dây cung AC
Do đó: \(\widehat{ADC}=\widehat{IAC}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)
hay \(\widehat{IDA}=\widehat{IAC}\)
Xét ΔIDA và ΔIAC có
\(\widehat{IDA}=\widehat{IAC}\)(cmt)
\(\widehat{AIC}\) chung
Do đó: ΔIDA∼ΔIAC(g-g)
Suy ra: \(\dfrac{ID}{IA}=\dfrac{IA}{IC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(IA^2=IC\cdot ID\)(đpcm)
*Không vẽ được hình, bạn thông cảm*
Gọi O' là điểm trên IO sao cho \(IO'=\frac{1}{3}IO\)
Xét \(\Delta\)IAO có: \(\frac{IA'}{IA}=\frac{IO'}{IO}\left(=\frac{1}{3}\right)\Rightarrow O'A'//OA\) (định lý Talet đảo)
Do đó: \(\frac{O'A'}{OA}=\frac{IA'}{IA}=\frac{1}{3}\Rightarrow O'A'=\frac{1}{3}R\)
Cmtt ta được: \(O'B'=\frac{1}{3}R;O'C'=\frac{1}{3}R;O'D'=\frac{1}{3}R\)