Chứng minh biểu thức sau luôn dương x2+2xy+2y2+2y+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)
Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)
=>x^2-2xy+y^2+y^2+2y+1=0
=>(x-y)^2+(y+1)^2=0
=>x=y=-1
B=-2022-2023=-4045
Cho các số x khác 2y thỏa mãn x2- 2xy - 2y2 - 3x +6y=0
Tính giá trị biểu thức A= x2+ 2xy _y2 - 2x- 2y
\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu \("="\Leftrightarrow x=y=1\)
Vậy \(F_{min}=2021\)
\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Bạn nên sửa lại đề là tìm GTNN
\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2+4y+4+15\\ A=\left(x-y+1\right)^2+\left(y+2\right)^2+15\ge15\\ A_{min}=15\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
Vậy GTNN của A là 15
\(x^2+2y^2+2xy+6x+2y+2027\)
\(=x^2+2x\left(y+3\right)+\left(y+3\right)^2+\left(y^2-4y+4\right)+2014\)
\(=\left(x+y+3\right)^2+\left(y-2\right)^2+2014\)
Ta có: \(\left\{{}\begin{matrix}\left(x+y+3\right)^2\ge0\forall x;y\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)\(\Leftrightarrow\)\(\Rightarrow\left(x+y+3\right)^2+\left(y-2\right)^2+2014\ge2014\)\(\forall x;y\)
Dấu " = " xảy ra < = > \(\left\{{}\begin{matrix}\left(x+y+3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-5\end{matrix}\right.\)
\(x^2+2y^2-2xy+x-2y+1=0\)
\(4x^2+8y^2-8xy+4x-8y+4=0\)
\(4x^2-4x\left(2y-1\right)+\left(2y-1\right)^2+8y^2-8y+4-\left(2y-1\right)^2=0\)
\(\left(2x-2y+1\right)^2+\left(4y^2-4y+1\right)+3=0\)
\(\left(2x-2y+1\right)^2+\left(2y-1\right)^2+3=0\) ( vô lí)
=> KL...........
\(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)\)
Áp dụng hàng đẳng thức \(\left(A+B\right)^2=A^2+2AB+B^2\)ta có: \(=\left(x+y\right)^2+\left(y+1\right)^2\)
Mà \(\left(x+y\right)^2\ge0\forall x;y\)và\(\left(y+1\right)^2\ge0\forall y\)\(\Rightarrow\left(x+y\right)^2+\left(y+1\right)^2\ge0\forall x;y\)