K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

\(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)\)

Áp dụng hàng đẳng thức \(\left(A+B\right)^2=A^2+2AB+B^2\)ta có: \(=\left(x+y\right)^2+\left(y+1\right)^2\)

Mà \(\left(x+y\right)^2\ge0\forall x;y\)\(\left(y+1\right)^2\ge0\forall y\)\(\Rightarrow\left(x+y\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

NV
1 tháng 11 2021

\(x^2-2xy+2y^2+2y+5=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)+4=\left(x-y\right)^2+\left(y+1\right)^2+4\)

Do \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)

\(\Rightarrow\left(x-y\right)^2+\left(y+1\right)^2+4>0\) ; \(\forall x;y\)

=>x^2-2xy+y^2+y^2+2y+1=0

=>(x-y)^2+(y+1)^2=0

=>x=y=-1

B=-2022-2023=-4045

16 tháng 11 2021

\(F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow x=y=1\)

Vậy \(F_{min}=2021\)

16 tháng 11 2021

\(\Rightarrow F=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+2021\\ \Rightarrow F=\left(x-y\right)^2+\left(y-1\right)^2+2021\ge2021\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

20 tháng 11 2021

Bạn nên sửa lại đề là tìm GTNN

\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2+4y+4+15\\ A=\left(x-y+1\right)^2+\left(y+2\right)^2+15\ge15\\ A_{min}=15\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)

Vậy GTNN của A là 15

6 tháng 5 2019

\(x^2+2y^2+2xy+6x+2y+2027\)

\(=x^2+2x\left(y+3\right)+\left(y+3\right)^2+\left(y^2-4y+4\right)+2014\)

\(=\left(x+y+3\right)^2+\left(y-2\right)^2+2014\)

Ta có: \(\left\{{}\begin{matrix}\left(x+y+3\right)^2\ge0\forall x;y\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)\(\Leftrightarrow\)\(\Rightarrow\left(x+y+3\right)^2+\left(y-2\right)^2+2014\ge2014\)\(\forall x;y\)

Dấu " = " xảy ra < = > \(\left\{{}\begin{matrix}\left(x+y+3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y+3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-5\end{matrix}\right.\)

31 tháng 7 2019

a) \(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2>0^{\left(đpcm\right)}\)

b) \(=\left(x-y\right)^2+2\left(x-y\right)+1+y^2-8y+16+3\)

\(=\left(x-y+1\right)^2+\left(y-4\right)^2+3\ge3>0^{\left(đpcm\right)}\)

25 tháng 12 2015

\(x^2+2y^2-2xy+x-2y+1=0\)

\(4x^2+8y^2-8xy+4x-8y+4=0\)

\(4x^2-4x\left(2y-1\right)+\left(2y-1\right)^2+8y^2-8y+4-\left(2y-1\right)^2=0\)

\(\left(2x-2y+1\right)^2+\left(4y^2-4y+1\right)+3=0\)

\(\left(2x-2y+1\right)^2+\left(2y-1\right)^2+3=0\) ( vô lí)

=> KL...........

22 tháng 12 2016

vô lí

6 tháng 7 2018

1/

\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)

\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)

\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)

2/

\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)

\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)

\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)