1. Cho A,B,C là ba góc của tam giác ABC. Chứng minh rằng:
sin2A+sin2B+sin2C= 4sinA.sinB.sinC
2. viết pt đường tròn (C) tiếp xúc với hai đường thẳng d1: 3x +2y +3=0 và d2: 2x-3y+15=0 và có tâm nằm trên đường thằng d3: x-y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tâm nằm trên đường thẳng ∆: x + 2y – 5 = 0 nên tâm I(5 – 2y; y). Mà đường tròn tiếp xúc với hai đường thẳng d 1 : 3 x − y + 5 = 0 v à d 2 : x + 3 y − 13 = 0 nên có bán kính R = d I ; d 1 = d I ; d 2
⇒ 3 ( 5 − 2 y ) − y + 5 3 2 + ( − 1 ) 2 = 5 − 2 y + 3 y − 13 1 2 + 3 2
⇒ 20 − 7 y 10 = − 8 + y 10 ⇔ 20 − 7 y = − 8 + y ⇔ 400 − 280 y + 49 y 2 = 64 − 16 y + y 2 ⇔ 48 y 2 − 264 y + 336 = 0 ⇔ y = 2 y = 7 2
Tương ứng ta có hai bán kính của (C) là R 1 = 6 10 , R 2 = 9 2 10
Đáp án là D.
Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)
Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:
\(\frac{\left|3x-4y+1\right|}{5}=\frac{\left|6x+8y-1\right|}{10}\Leftrightarrow\orbr{\begin{cases}2\left(3x-4y+1\right)=6x+8y-1\\2\left(3x-4y+1\right)=-6x-8y+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}16y-3=0\\12x+1=0\end{cases}}\)
Xét hệ \(\hept{\begin{cases}3x+y-1=0\\16y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{48}\\y=\frac{3}{16}\end{cases}}\Rightarrow I_1\left(\frac{13}{48};\frac{3}{16}\right)\Rightarrow R_1=\frac{17}{80}\)
\(\Rightarrow\left(C_1\right):\left(x-\frac{13}{48}\right)^2+\left(y-\frac{3}{16}\right)^2=\frac{289}{6400}\)
Xét hệ: \(\hept{\begin{cases}3x+y-1=0\\12x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{12}\\y=\frac{5}{4}\end{cases}}}\Rightarrow I_2\left(-\frac{1}{12};\frac{5}{4}\right)\Rightarrow R_2=\frac{17}{20}\)
\(\Rightarrow\left(C_2\right):\left(x+\frac{1}{12}\right)^2+\left(y-\frac{5}{4}\right)^2=\frac{289}{400}\).
Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)
Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:
|3x−4y+1|5 =|6x+8y−1|10 ⇔[
2(3x−4y+1)=6x+8y−1 |
2(3x−4y+1)=−6x−8y+1 |
⇔[
16y−3=0 |
12x+1=0 |
Xét hệ {
3x+y−1=0 |
16y−3=0 |
⇔{
x=1348 |
y=316 |
⇒I1(1348 ;316 )⇒R1=1780
⇒(C1):(x−1348 )2+(y−316 )2=2896400
Xét hệ: {
3x+y−1=0 |
12x+1=0 |
⇔{
x=−112 |
y=54 |
⇒I2(−112 ;54 )⇒R2=1720
⇒(C2):(x+112 )2+(y−54 )2=289400 .
Giả sử đường tròn cần lập có tâm O; bán kính R.
Đường thẳng Δ đi qua M(2; -2) và có VTPT là n→(4; 3) nên đường thẳng này có 1 VTCP là u→(3; -4) . Phương trình tham số của đường thẳng Δ là:
O nằm trên Δ ⇒ O(2 + 3t; -2 – 4t)
Đường tròn (O; R) tiếp xúc với d1 và d2 ⇒ d(O; d1) = d(O; d2) = R
Ta có: d(O; d1) = d(O; d2)
+ Với t = 0 ⇒ O(2; -2) ⇒ R = d(O; d1) = 2√2
Phương trình đường tròn: (x – 2)2 + (y + 2)2 = 8.
+ Với t = -2 ⇒ O(-4; 6) , R = d(O; d1) = 3√2
Phương trình đường tròn: (x + 4)2 + (y – 6)2 = 18
Vậy có hai phương trình đường tròn thỏa mãn là:
(x – 2)2 + (y + 2)2 = 8 hoặc (x + 4)2 + (y – 6)2 = 18