Tính \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=1-\frac{1}{20}\)
\(A=\frac{19}{20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}\)
\(=\frac{19}{20}\)
Ta có:A: 1/1.2 +1/2.3 +1/3.4+...+1/18.19+1/19.20
=> A= 1-1/2 +1/2-1/3+1/3-1/4+...+1/18-1/19+1/19-1/20
=>A= 1-1/20=19/20
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)
=1-1/20
=19/20
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(A=2\left(1-\frac{1}{20}\right)\)
\(A=2.\frac{19}{20}=\frac{19}{10}\)
Vậy ...
=2.(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+......+\(\frac{1}{19.20}\))
=2.( 1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+..........+\(\frac{1}{19}\)-\(\frac{1}{20}\))
=2.(1-\(\frac{1}{20}\))
=2.\(\frac{19}{20}\)
= \(\frac{19}{10}\)
A = 1 + 1 + 1 + ...... + 1 1x2 2x3 3x4 19x20
A= (1/1-1/2)+(1/2-1/3)+(1/3-1/4)+....+(1/19-1/20)
A= 1/1- 1/20
A= 19/20
Vậy A= 19/20
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{19.20}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{19}-\frac{1}{20}\)
A = \(1-\frac{1}{20}\)
A = \(\frac{19}{20}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{19.20}-\frac{x}{40}=\frac{3}{-10}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{20}-\frac{x}{40}=\frac{-3}{10}\)
\(\Rightarrow1-\frac{1}{20}-\frac{x}{40}=\frac{-3}{10}\)
\(\Rightarrow\frac{40}{40}-\frac{2}{40}-\frac{x}{40}=\frac{-12}{40}\)
\(\Rightarrow\frac{38}{40}-\frac{x}{40}=\frac{-12}{40}\)
\(\Rightarrow\frac{x}{40}=\frac{38}{40}-\frac{-12}{40}\)
\(\Rightarrow\frac{x}{40}=\frac{38}{40}+\frac{12}{40}\)
\(\Rightarrow\frac{x}{40}=\frac{50}{40}\)
\(\Rightarrow x=50\)
Vậy x = 50
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{19\cdot20}-\frac{x}{40}=\frac{-3}{10}\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{19}-\frac{1}{20}-\frac{x}{40}=\frac{3}{-10}\)
\(1-\frac{1}{20}-\frac{x}{40}=\frac{3}{-10}\)
\(\frac{x}{40}=1-\frac{1}{20}-\frac{3}{-10}=1\frac{1}{4}=\frac{5}{4}\)
\(\frac{x}{40}=\frac{5}{4}\Rightarrow x=\frac{40\cdot5}{4}=50\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
= \(1-\frac{1}{20}\)
= \(\frac{19}{20}\)
Vậy A = \(\frac{19}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(A=\frac{1}{1}-\frac{1}{20}=\frac{19}{20}\)
Vậy A = 19/20
Lời giải:
$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+....+\frac{19-18}{18.19}+\frac{20-19}{19.20}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}$
$=1-\frac{1}{20}=\frac{19}{20}$