Tìm n thuộc số tự nhiên sao cho A = n2 + 3n - 4 có giá trị là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)
<=> 3(2n+5) chia hết cho (3n+1)
<=>(6n+15) chia hết cho (3n+1)
<=> (6n + 2 +13) chia hết cho (3n+1)
<=> 13 chia hết cho (3n+1)
=> (3n+1) thuộc Ư(13)
Vì n thuộc N
=> (3n+1) = 1,13
=> n = 0 hoặc 4
b)Trong phần này ta sẽ áp dung 1 tính chất sau:
a/b < (a+m)/(b+m) với a<b
Ta thấy :
x/(x+y) > x/(x+y+z)
y/(y+z) > y/(x+y+z)
z/(z+x) > z/(x+y+z)
=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)
=> A>1
Ta thấy :
x/x+y < (x+z)/(x+y+z)
y/y+z < (y+x)/(x+y+z)
z/z+x < (z+y)/(x+y+z)
=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)
=>A< 2(x+y+z)/(x+y+z)
=> A<2
=>1<A<2
=> A ko phải là số nguyên(đpcm)
=\(\frac{3n+4}{n-2}=\frac{3\left(n-2\right)+10}{n-2}=3+\frac{10}{n-2}\)điều kiện n kacs 2
muốn A nguyên thì (n-2) =Ư(10)={-1,-2,-5,-10,1,2,5,10}
xét từng TH:
- n-2=1=> n=3
- n-2=2=>n=4
- n-2=5=>n=7
- n-2=10=>n=12
- n-2=-1=> n=1
- n-2=-2=>n=0
- n-2=-5=>n=-3
- n-2=-10=>n=-8
=>giá trị thỏa đề là n={3,4,7,12,10}
B= \(\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
để B nguyên thì (2n-1)=Ư(8)={1,2,4,8,-1,-2,-4,-8}
xét từng tH:
- 2n-1=1=>n=1
- 2n-1=2=>n=3/2
- 2n-1=4=>n=5/2
- 2n-1=8=>n=9/2
- 2n-1=-1=>n=0
- 2n-1=-2=>2=-1/2
- 2n-1=-4=>n=-3/2
- 2n-1=-8=>n=-7/2
vậy giá trị n thỏa là{ 0,1}