K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 1:

Gọi giao điểm của 2 đths là \(I(x_I,y_I)\)

a)

Giao điểm nằm trên trục tung thì \(x_I=0\)

Ta có: \(I\in (d);(d')\Rightarrow \left\{\begin{matrix} y_I=m.0-4=-4\\ y_I=0+m=m\end{matrix}\right.\)

\(\Rightarrow m=-4\)

b) Giao điểm nằm trên trục hoành thì \(y_I=0\)

Ta có: \(I\in (d);(d')\Rightarrow \left\{\begin{matrix} 0=mx_I-4\\ 0=x_I+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} mx_I=4\\ x_I=-m\end{matrix}\right.\)

\(\Rightarrow -m^2=4\) (VL)

Vậy k tồn tại $m$ để hai đths cắt nhau tại một điểm trên trục hoành.

c)

Hai đths cắt nhau tại điểm có tung độ bằng $1$

\(\Leftrightarrow \left\{\begin{matrix} mx_I-4=1\\ x_I+m=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} mx_I=5\\ x_I=1-m\end{matrix}\right.\)

\(\Rightarrow m(1-m)=5\)

\(\Leftrightarrow (m-\frac{1}{2})^2+\frac{19}{4}=0\) (VL)

Vậy k tồn tại $m$ để 2 đths cắt nhau tại điểm có tung độ bằng $1$

 

 

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Bài 2:

\(y=(m+1)x-m-3, \forall m\)

\(\Leftrightarrow m(x-1)+x-3-y=0, \forall m\)

Để điều này xảy ra thì \(\left\{\begin{matrix} x-1=0\\ x-3-y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=-2\end{matrix}\right.\)

Như vậy $(d)$ luôn đi qua điểm \((1,-2)\) với mọi $m$

b) ĐK: \(m\neq -1\)

\(A=(d)\cap Ox\Rightarrow \left\{\begin{matrix} y_A=0\\ y_A=(m+1)x_A-m-3\end{matrix}\right. \)

\(\Rightarrow \left\{\begin{matrix} y_A=0\\ x_A=\frac{m+3}{m+1}\end{matrix}\right.\)

\(B=(d)\cap Oy\Rightarrow \left\{\begin{matrix} x_B=0\\ y_B=(m+1)x_B-m-3\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x_B=0\\ y_B=-m-3\end{matrix}\right.\)

Vì $A,B$ nằm trên trục hoành và trục tung nên hiển nhiên tam giác $OAB$ vuông sẵn. Vậy để nó là tam giác vuông cân thì $OA=OB$

\(\Leftrightarrow \sqrt{(\frac{m+3}{m+1})^2}=\sqrt{(-m-3)^2}\)

\(\Leftrightarrow (\frac{m+3}{m+1})^2=(m+3)^2\)

\(\Leftrightarrow (m+3)^2\left(\frac{1}{(m+1)^2}-1\right)=0\)

\(\Rightarrow \left[\begin{matrix} m=-3\\ m=-2\\ m=0\end{matrix}\right.\)

Với $m=-3$ thì $A,B$ trùng nhau nên $m=0,-2$

a: PTHĐGĐ là;

1/2x^2-mx-2=0

a=1/2; b=-m; c=-2

Vì a*c<0 nên (d) luôn cắt (P) tại hai điểm phân biệt

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoànhBài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các...
Đọc tiếp

Bài 1: Cho hàm số \(y=x^3+3x^2+mx+m-2\) (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành

Bài 2: Cho hàm số \(y=\dfrac{2x-2}{x+1}\) . Tìm m để đường thẳng d: \(y=2x+m\)  cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB=\(\sqrt{5}\)

Bài 3: Cho hàm số \(y=\dfrac{1}{3}x^3-mx^2+2(m-1)x-3\) (m là tham số) có đồ thị là (Cm) . Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về cùng một phía đối với trục tung

Bài 4: Cho hàm số \(y=-x^3+2(m-1)x^2-(m^2-3m+2)x-4\)

(m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung

Bài 5: Cho hàm số \(y=-x^3+3x^2+3(m^2-1)x-3m^2-1\) (1). Tìm m để hàm số (1) có cực đại, cực tiểu, đồng thời các điểm cực đại và cực tiểu cùng với gốc tọa độ O tạo thành một tam giác vuông tại O

 

5
NV
18 tháng 7 2021

1.

Đồ thị hàm bậc 3 có 2 điểm cực trị nằm về 2 phía trục hoành khi và chỉ khi \(f\left(x\right)=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3+3x^2+mx+m-2=0\) có 3 nghiệm pb

\(\Leftrightarrow x^3+3x^2-2+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-2\right)+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+m-2=0\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2+m-2\ne0\\\Delta'=1-\left(m-2\right)>0\end{matrix}\right.\) 

\(\Leftrightarrow m< 3\)

NV
18 tháng 7 2021

2.

Pt hoành độ giao điểm:

\(\dfrac{2x-2}{x+1}=2x+m\)

\(\Rightarrow2x-2=\left(2x+m\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+mx+m+2=0\) (1)

d cắt (C) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-8\left(m+2\right)>0\Rightarrow\left[{}\begin{matrix}m>4+4\sqrt{2}\\m< 4-4\sqrt{2}\end{matrix}\right.\)

Khi đó, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{m}{2}\\x_Ax_B=\dfrac{m+2}{2}\end{matrix}\right.\)

\(y_A=2x_A+m\) ; \(y_B=2x_B+m\)

\(\Rightarrow AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(2x_A-2x_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2=1\)

\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=1\)

\(\Leftrightarrow\left(-\dfrac{m}{2}\right)^2-4\left(\dfrac{m+2}{2}\right)=1\)

\(\Leftrightarrow m^2-8m-20=0\Rightarrow\left[{}\begin{matrix}m=10\\m=-2\end{matrix}\right.\)

19 tháng 6 2019

a) Hai đường thẳng (d) và (d') song song khi

17 tháng 9 2019

c) (d) cắt (d') tại 1 điểm nằm trên trục tung khi

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3Bài 2: Cho đường thẳng (d): y = 4xviết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)Bài 4: Cho 2 hàm số bậc...
Đọc tiếp

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017

b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3

Bài 2: Cho đường thẳng (d): y = 4x

viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10

Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)

Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1

a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2

b) Vẽ đồ thị 2 hàm số trên khi m = 2

c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung

Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)

Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5

a) Tìm m để 3 đường thẳng đã cho đồng quy

b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi

 

0
27 tháng 2 2019

b) (d) đi qua điểm A (2; 5) và B ( -2; 3) khi:

21 tháng 12 2021

 -4m+n=-2

sao thành 2n=10