So sánh \(\sqrt{13}+\sqrt{3}\) với 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{5-\left(\sqrt{12}+1\right)}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
a) Ta có \(5=\sqrt{25}\)
Vì \(\sqrt{25}>\sqrt{11}\) nên \(5>\sqrt{11}\)
b) Ta có \(4=\sqrt{16}\)
Vì \(\sqrt{13}< \sqrt{16}\) nên \(\sqrt{13}< 4\)
c) Ta có \(-7=-\sqrt{49}\)
Vì \(-\sqrt{49}< -\sqrt{43}\) nên \(-7< -\sqrt{43}\)
d) Ta có \(-5=-\sqrt{25}\)
Vì \(-\sqrt{21}>-\sqrt{25}\) nên \(-\sqrt{21}>-5\)
\(\left(\sqrt{4+\sqrt{5+\sqrt{6}}}\right)^2=4+\sqrt{5+\sqrt{6}};3^2=9=4+5\left(1\right)\\ \left(\sqrt{5+\sqrt{6}}\right)^2=5+\sqrt{6};5^2=25=5+20\left(2\right)\\ \left(\sqrt{6}\right)^2=6;20^2=400\\ \Leftrightarrow\sqrt{6}< 20\)
Thay vào \(\left(2\right)\Leftrightarrow\sqrt{5+\sqrt{6}}< 5\)
Thay vào \(\left(1\right)\Leftrightarrow\sqrt{4+\sqrt{5+\sqrt{6}}}< 3\)
\(\sqrt{5-\sqrt{13+4\sqrt{3}}}=\sqrt{5-\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}.1+1^2}}\)\(=\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}\)\(=\sqrt{3}-1\)
a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)
=> A2=8+2\(\sqrt{3}\)
B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)
=>A>B
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(1+\sqrt{12}\right)^2}}}=\sqrt{6+2\sqrt{5-\left|1+\sqrt{12}\right|}}=\sqrt{6+2\sqrt{5-1-\sqrt{12}}}\)
\(=\sqrt{6+2\sqrt{4-\sqrt{12}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2.\left|\sqrt{3}-1\right|}=\sqrt{6+2.\left(\sqrt{3}-1\right)}\)\(=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)
Vậy: \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3}+1\)
Chúc các bạn học tốt và vote cho mình nhé vì đây là lần đầu tiên mình trả lời! Cảm ơn!
$\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}=\sqrt{6+2\sqrt{5-\sqrt{\left(1+\sqrt{12}\right)^2}}}=\sqrt{6+2\sqrt{5-\left|1+\sqrt{12}\right|}=\sqrt{6+2\sqrt{5-1-\sqrt{12}}}=\sqrt{6+2\sqrt{4-\sqrt{12}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2.\left|\sqrt{3}-1\right|}}$$\sqrt{6+2.\left(\sqrt{3}-1\right)}=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(1+\sqrt{3}\right)^2}=\left|1+\sqrt{3}\right|=1+\sqrt{3}$
Vậy √6+2√5−√13+√48 = √3+1