K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

Ai giúp mk vs

28 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{3n+6}{n+1}=\frac{3n+3+3}{n+1}=\frac{3n+3}{n+1}+\frac{3}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{3}{n+1}=3+\frac{3}{n+1}\)

Để A nguyên thì \(\frac{3}{n+1}\) phải nguyên \(\Rightarrow\)\(3⋮\left(n+1\right)\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(n+1\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(0\)\(-2\)\(2\)\(-4\)

Vậy \(n\in\left\{-4;-2;0;2\right\}\)

28 tháng 3 2018

\(b)\) 

* Tính GTLN : 

Ta có : 

\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\)( câu a mình có làm rồi ) 

Để  đạt GTLN thì \(\frac{3}{n+1}\) phải đạt GTLN hay \(n+1>0\) và đạt GTNN 

\(\Rightarrow\)\(n+1=1\)

\(\Rightarrow\)\(n=0\)

Suy ra : 

\(A=3+\frac{3}{n+1}=3+\frac{3}{0+1}=3+\frac{3}{1}=3+3=6\)

Vậy \(A_{max}=6\) khi \(n=0\)

* Tính GTNN : 

Ta có : 

\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\) ( theo câu a ) 

Để A đạt GTNN thì \(\frac{3}{n+1}\) phải đạt GTNN hay \(n+1< 0\) và đạt GTLN 

\(\Rightarrow\)\(n+1=-1\)

\(\Rightarrow\)\(n=-2\)

Suy ra : 

\(A=3+\frac{3}{n+1}=3+\frac{3}{-2+1}=3+\frac{3}{-1}=3-3=0\)

Vậy \(A_{min}=0\) khi \(n=-2\)

Chúc bạn học tốt ~ 

7 tháng 8 2017

\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)

a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3 

<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=>\(2n\in\left\{-8;-4;-2;2\right\}\)

<=>\(n\in\left\{-4;-2;-1;1\right\}\)

b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\)  nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên

<=> 2n+3=-1 <=> n=-2

\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2

phần giá trị nhỏ nhất bạn làm nốt

14 tháng 1 2017

Bài 1 :

\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)

                 \(=a-b+c-d-a+c\)

                 \(=-\left(b+d\right)=VP\)

\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)

\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)

                 \(=a-b-c+d+b+c\)

                 \(=a+d=VP\)

\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)

23 tháng 3 2022

a) \(A=\frac{2n-7}{n-2}=2\)

\(\Rightarrow A=\left(\frac{2\left(n-2\right)-3}{n-2}\right)=2\)

\(\Rightarrow n-2-3=2\)

\(\Rightarrow n-5=2\)

\(\Rightarrow n=2-5\)

\(\Rightarrow n=-3\)

b) Để \(max\frac{2n-7}{n-2}\Rightarrow max\left\{2n-7;n-2\right\}\)

\(\Rightarrow n=9\)

c) Để \(min\frac{2n-7}{n-2}\Rightarrow min\left\{2n-7;n-2\right\}\)

\(\Rightarrow n=-9\)

d) Để là phân số tối giản thì: \(\left(2n-7\right)-2\left(n-2\right)=1\)

\(\Rightarrow\left(2n-7\right)-\left(2n-4\right)=1\)

\(\Rightarrow n=3\)

d) Để A rút gọn được thì \(ƯCLN\left(2n-7,n-2\right)\ne1\)

\(\Rightarrow n-5\)không phải là số nguyên tố.

\(\Rightarrow n=\left\{1;-1;3;-3;7;-7;9;-9\right\}\)

26 tháng 2 2017

Để A là phân số thì 3n + 7 ko chia hết cho n + 1

<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}

=> n khác {-2;-3;-5;0;1;3}

Để A là số nguyên thì 3n + 7 chia hết cho n + 1

=> 3n + 3 + 4 chia hết cho n + 1

=> 3.(n + 1) + 4 chia hết cho n + 1

=>  4 chia hết cho n + 1

=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}

=> n = {-5;-3;-2;0;1;3}

26 tháng 2 2017

ko biết

15 tháng 8 2017
nhanh lên các bạn
3 tháng 7

3 tháng 7