K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{3n+6}{n+1}=\frac{3n+3+3}{n+1}=\frac{3n+3}{n+1}+\frac{3}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{3}{n+1}=3+\frac{3}{n+1}\)

Để A nguyên thì \(\frac{3}{n+1}\) phải nguyên \(\Rightarrow\)\(3⋮\left(n+1\right)\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(n+1\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(0\)\(-2\)\(2\)\(-4\)

Vậy \(n\in\left\{-4;-2;0;2\right\}\)

28 tháng 3 2018

\(b)\) 

* Tính GTLN : 

Ta có : 

\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\)( câu a mình có làm rồi ) 

Để  đạt GTLN thì \(\frac{3}{n+1}\) phải đạt GTLN hay \(n+1>0\) và đạt GTNN 

\(\Rightarrow\)\(n+1=1\)

\(\Rightarrow\)\(n=0\)

Suy ra : 

\(A=3+\frac{3}{n+1}=3+\frac{3}{0+1}=3+\frac{3}{1}=3+3=6\)

Vậy \(A_{max}=6\) khi \(n=0\)

* Tính GTNN : 

Ta có : 

\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\) ( theo câu a ) 

Để A đạt GTNN thì \(\frac{3}{n+1}\) phải đạt GTNN hay \(n+1< 0\) và đạt GTLN 

\(\Rightarrow\)\(n+1=-1\)

\(\Rightarrow\)\(n=-2\)

Suy ra : 

\(A=3+\frac{3}{n+1}=3+\frac{3}{-2+1}=3+\frac{3}{-1}=3-3=0\)

Vậy \(A_{min}=0\) khi \(n=-2\)

Chúc bạn học tốt ~ 

26 tháng 2 2017

Để A là phân số thì 3n + 7 ko chia hết cho n + 1

<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}

=> n khác {-2;-3;-5;0;1;3}

Để A là số nguyên thì 3n + 7 chia hết cho n + 1

=> 3n + 3 + 4 chia hết cho n + 1

=> 3.(n + 1) + 4 chia hết cho n + 1

=>  4 chia hết cho n + 1

=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}

=> n = {-5;-3;-2;0;1;3}

26 tháng 2 2017

ko biết

19 tháng 4 2018

n=2/3

19 tháng 4 2018

anh Nguyen ơi cậu trả lời có lời giải được ko

25 tháng 4 2023

ko nhìn ra