Chứng minh: M=a2 +5a+7 không chia hết cho 9 với mọi số nguyên a
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Lời giải:
Giả sử $M=a^2+5a+7\vdots 9$ với mọi $a$ nguyên.
$\Rightarrow a^2+5a+7\vdots 3$
$\Rightarrow a^2+5a+7-3a-6\vdots 3$
$\Rightarrow a^2+2a+1\vdots 3\Rightarrow (a+1)^2\vdots 3$
$\Rightarrow a+1\vdots 3$
$\Rightarrow a=3k-1$ với $k$ nguyên.
Khi đó:
$M=a^2+5a+7=(3k-1)^2+5(3k-1)+7=9k^2-6k+1+15k-5+7$
$=9k^2+9k+3\not\vdots 9$
Ta có đpcm.