Cho hình chữ nhật ABCD, kẻ AH vuông góc với BD.Tính chiều rộng của hình chữ nhật,biết AH=\(\sqrt{3}\) và \(S_{ABCD}=4\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích tam giác vuông ABD vuông tại A được tính theo 2 cách:
\(S_{ABD}=\frac{AB\times AD}{2}=\frac{AH\times BD}{2}=\frac{S_{ABCD}}{2}=\frac{4\sqrt{3}}{2}\)
=> \(AH\times BD=4\sqrt{3}\)
=> \(BD\times\sqrt{3}=4\sqrt{3}\)
=> \(BD=4\left(cm\right)\)
Tam giác AHB đồng dạng tam giác DHA theo trường hợp góc - góc nên suy ra:
\(\frac{AH}{HD}=\frac{BH}{AH}\) => \(AH^2=BH\times DH=\left(BD-DH\right)\times DH\)
=> \(\left(\sqrt{3}^2\right)=3=\left(4-DH\right)\times DH\)
=> \(4DH-DH^2-3=0\)
=> \(-\left(DH^2-4DH+3\right)=0\)
=> \(DH^2-4DH+3=0\)
=> \(DH^2-DH-3DH+3=0\)
=> \(DH\left(DH-1\right)-3\left(DH-1\right)=0\)
=> \(\left(DH-1\right)\left(DH-3\right)=0\)
Với trường hợp DH=1 (cm) thì theo định lí Pytago, ta sẽ tính được AD=2(cm)
Với trường hợp DH=3(cm) thì theo định lí Pytago, ta sẽ tính được \(AD=\sqrt{12}\left(cm\right)\)
Vậy độ dài chiều dài của hình chữ nhật đó là \(\sqrt{12}\left(cm\right)\)
BH=căn 10^2-6^2=8cm
=>BD=10^2/8=12,5cm
=>AD=7,5cm
S ABCD=7,5*10=75cm2
Hình tự vẽ nha bạn
Xét tam giác ABD vuông tại A (ABCD là hình chứ nhật nên góc A = 90 độ)
Áp dụng hệ thức lượng trong tam giác vuông
\(\dfrac{1}{AD^2}+\dfrac{1}{AB^2}=\dfrac{1}{AH^2}\)
Thay số vào tính được AD = 15cm
Chu vi HCN = (20+15).2 = 70cm
Xét tam giác AHB vuông tại H có
\(AH^2+HB^2=AB^2\)( đl PYtago)
T/s \(12^2+HB^2=20^2\)
=>\(HB^2=20^2-12^2\)
=> \(HB^2=256\)
=> \(HB=16\)
Xét tam giác DAB vuông tại A có
\(AH^2=DH.HB\)
⇔ \(12^2=DH.16\)
=> \(DH=24\)
Xét tam giác AHD vuong tại H có
\(AH^2+DH^2=AD^2\)( đl Pyta go)
T/s \(12^2+24^2=AD^2\)
=> AD = \(12\sqrt{5}\)
Chu vi HCN ABCD là
( AB + AD ).2
= ( 20 +12\(\sqrt{5}\)).2
= 93,6 cm
Vây chu vi là 93,6 cm
1.
\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\left(pytago\right)\)
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{3,2\cdot1,8}=5,76\left(cm\right)\end{matrix}\right.\)
2.
Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC=HC\\AB^2=BH\cdot BC=BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=4\left(cm\right)\\AB=\sqrt{HC+HB}=\sqrt{4+1}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-5}=2\sqrt{5}\left(cm\right)\)
Vậy \(AB=\sqrt{5}\left(cm\right);BC=5\left(cm\right);AC=2\sqrt{5}\left(cm\right)\)