Bài 1: Rút gọn các biểu thức sau:
a) (\(\left(\sqrt{12}-\sqrt{75}+\sqrt{48}\right):\sqrt{3}\)
b) \(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{3-1}}\)
c) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)\) với 0 \(\le\) a \(\ne\)1
Bài 2:
a) Vẽ đồ thị (P) của hàm số y = ax2
b) Chứng minh rằng đường thẳng (d) y = kx +1 luôn cắt đồ thị (P) tại hai điểm phân biệt với mọi k
Bài 3
a) Giải hệ phương trình: \(\left\{{}\begin{matrix}2x-2y=-2\\\dfrac{1}{2}x+\dfrac{2}{3}y=5\end{matrix}\right.\)
b) Giải phương trình: x4 +x2 -2 = 0
c) Cho phương trình: x2 - 2(m-1)x + 2m -4 =0 có hai nghiệm x1x2. Tìm giá trị nhỏ nhất của biểu thức A = x11x22
Bài 4: Hai người cùng làm chung một công việc trong \(\dfrac{12}{5}\) giờ thì xong. Nếu mỗi người làm một mình thì người thứ nhất hoàn thành công việc trong ít hơn người thứ hai là 2 giờ. Hỏi nếu làm một mình thì mỗi người phải làm trong bao nhiêu thời gian để xong công việc?
Bài 5: Cho đường tròn(O;R) từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d) lấy điểm M bất kì ( M khác A) kẻ các tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC vuông góc MB, BD vuông góc MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB
a) Chứng minh tứ giác AMBO nội tiếp
b) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn
c) Chứng minh OI.OM = R2; OI. IM = IA2
d) Chứng ming OAHB là hình thoi
e) Chứng minh ba điểm O,H,M thẳng hàng
Lời giải:
a) ĐKXĐ: \(a>0; a\neq 1\)
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)
\(A=\frac{(\sqrt{a}+1)^2-(\sqrt{a}-1)^2+4\sqrt{a}(\sqrt{a}-1)(\sqrt{a}+1)}{(\sqrt{a}-1)(\sqrt{a}+1)}.\frac{a+1}{\sqrt{a}}\)
\(A=\frac{a+1+2\sqrt{a}-(a+1-2\sqrt{a})+4\sqrt{a}(a-1)}{a-1}.\frac{a+1}{\sqrt{a}}\)
\(A=\frac{4\sqrt{a}+4\sqrt{a}(a-1)}{a-1}.\frac{a+1}{\sqrt{a}}=\frac{4\sqrt{a}.a}{a-1}.\frac{a+1}{\sqrt{a}}\)
\(A=\frac{4a(a+1)}{a-1}\)
b)
Ta có:
\(a=(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})^2\)
\(=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})\)
\(=2(16-15)=2\)
Thay $a=2$ vào biểu thức đã thu gọn:
\(A=24\)
Cái
\(\sqrt{8-2\sqrt{15}}=\sqrt{(\sqrt{3})^2+(\sqrt{5})^2-2\sqrt{3}.\sqrt{5}}=\sqrt{(\sqrt{5}-\sqrt{3})^2}=\sqrt{5}-\sqrt{3}\)
Thường thì những biểu thức căn cồng kềnh bao giờ cũng có hướng khai triển ra chính phương hoặc lập phương nên cứ chịu khó mần là ra thôi, kiểu gì cũng tách ghép được.