K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔNAM có

NH là đường trung tuyến

NC=2/3NH

Do đó: C là trọng tâm

b: Xét tứ giác NHOM có

I là trung điểm của NO

I là trung điểm của HM

Do đó: NHOM là hình bình hành

Suy ra: NO=HM

=>NO=AH

c: Hình bình hành NHMO có góc NHM=90 độ

nen NHMO là hình chữ nhật

=>HO=MN

20 tháng 4 2016

a) Tam giác ABC cân tại A có AH⊥BC nên H là trung điểm của BC.

Do đó, HB=HC=12BC.

Lại có CN=BC nên HC=12CN.

Tam giác AMN có H là trung điểm của AM nên NH

8 tháng 4 2022

có cần hình k

 

8 tháng 4 2022

tự vẽ hình 

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

a)

Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔABH vuông tại H và ΔDCH vuông tại D có 

AH=DH(gt)

BH=CH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(Hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AC=DC(đpcm)

b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có 

EH chung

AH=DH(gt)

Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)

Suy ra: AE=DE(Hai cạnh tương ứng)

Xét ΔACE và ΔDCE có 

CA=CD(cmt)

CE chung

AE=DE(cmt)

Do đó: ΔACE=ΔDCE(c-c-c)

1 tháng 3 2020

a,Ta có:
 \(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )

b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:

AH = HM (gt)

\(\widehat{AHC}\)\(\widehat{MHC}\)(= 90 độ)

HC : cạnh chung

\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)

\(\Rightarrow\)AC=CM ( t/ứ)

Mà AC = CN (gt) và CM = AC (cmt)

nên CM = CN

\(\Rightarrow\Delta CMN\)cân 

Xét ΔABC cân tại A có AH là đường cao

nên H là trung điểm của BC

Xét ΔEAD có

EH là trung tuyến

EB=2/3HE

=>B là trọng tâm

=>Mlà trung điểm của ED