K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath

Em tham khảobài tương tự tại đây nhé.

17 tháng 12 2020

a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)

=> \(\widehat{ECF}=90^o\)

Xét t/g DEC và t/g BFC có

EC = FC (GT)

\(\widehat{DCE}=\widehat{BCF}=90^o\)

DC = BC (do ABCD là hình vuông)

=> t/g DEC = t/g BFC (c.g.c)

=> DE = BF (2 cạnh t/ứ(

b/ Xét t/g BEH và t/g DEC có

\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)

\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)

 \(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)

=> \(\widehat{BHE}=\widehat{DCB}=90^o\)

=> \(DE\perp BF\)

Xét t/g BDF có

DE ⊥ BF

BC ⊥ DF

DE cắt BC tại E

=> E là trực tâm t/g BDF

=> .... đpcm

c/ Xét t/g CEF có CE = CF ; M là trung điểm EF

=> CM ⊥ EF

=> \(\widehat{KMC}=90^o\)

Tự cm OKMC làhcn

=> OC = KM => AO = KM

Mà AO // KM (cùng vuông góc vs BD)

=> AOMK là hbh

=> OM // AK

12 tháng 4 2018

Chứng minh được:

C B F ^ + B E M ^   =   M D F ^ + D E C ^ = 90 0

=>  B M D ^ = 90 0  nên M thuộc đường tròn đường kính BD. Mà E Î BC nên quỹ tích của điểm M là là cung B C ⏜  của đường tròn đường kính BD

1 tháng 10 2018

giờ muộn rồi chị ạ ko ai giải nữa đâu

1 tháng 10 2018

A B C D N E M 1 2

Mk chỉ nêu cách làm bạn tự triển khai nha!

CM \(\Delta ADC=\Delta CBE (g.c.g)\) (*)

(\(\angle C_1=\angle C_2\) cùng phụ với \(\angle ACB\))

\(\Rightarrow AC=CE\Rightarrow \Delta ACE \) cân tại C

\(\Rightarrow AB=CE\)

Từ (*) suy ra:

\(S_{ANEC}=S_{ACE}+S_{ANE}=S_{ABCD}+S_{ANE}\) 

            \(=\dfrac{1}{2}AB^2+\dfrac{1}{2}NA.2AB=\dfrac{1}{2}AB(AB+2NA)\)

Mà \( S_{ANCE}=\dfrac{15}{8} S_{ABCD}\) \(\Rightarrow \dfrac{15}{8}.\dfrac{1}{2} AB^2=\dfrac{1}{2}.AB(2AN+AB)\)

\(\Rightarrow 2AN+AB=\dfrac{15}{8}AB\) \(\Rightarrow \dfrac{NA}{AB}=\dfrac{7}{16}\)

CM \(\Delta NAM \) đồng dạng với \(\Delta CBM\) \((g.g)\)

\(\Rightarrow \dfrac{NA}{AB}=\dfrac{NA}{BC}=\dfrac{AM}{MB}=\dfrac{7}{16}\)

Vậy cần lấy M sao cho \(\dfrac{AM}{MB}=\dfrac{7}{16}\)