Cho đa thức: f(x) = x^2 + mx +2.
a) Xác định m để f(x) nhận -2 làm mọt nghiệm.
b) Tìm tập hợp các nghiệm của f(x) ứng với giá trị vừa tìm được của m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đề f(x) nhận -2 là nghiệm lấy -2 thay vào x ta có:
\(\left(-2\right)^2-2m+2=0\)
\(\Rightarrow4-2m+2=0\)
\(\Rightarrow6-2m=0\)
\(\Rightarrow2m=6\)
\(\Rightarrow m=3\)
b) Tìm được m ta có: \(f\left(x\right)=x^2+3x+2\)
\(\Rightarrow x^2+3x+2=0\)
\(\Rightarrow x^2+2x+x+2=0\)
\(\Rightarrow x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của f(x) là: \(S=\left\{-2;-1\right\}\)
a) ( - 2 )2 + m . ( - 2 ) + 2 = 0 \(\Leftrightarrow\)m = 3
b) f(x) = x2 + 3x + 2
f(x) có tổng bằng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận (-1) làm một nghiệm. Như vậy f(x) có 2 nghiệm là (-2) (Theo câu a) và ( -1) ngoài ra không còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là 2 nghiệm
Do đó tập hợp các nghiệm của f(x) là S = ( -1; -2 )
a, Để f(x) nhận 3 là nghiệm thì : \(3^2-3m+15=0\)
\(\Leftrightarrow24-3m=0\)
\(\Leftrightarrow m=8\)
b, Với m = 8 thì \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
Vậy \(S=\left\{3;5\right\}\)
a, Thay x = -2, ta có :
f(-2) = (-2 )2 + ( m . -2 ) + 2 = 0
4 + ( -2m ) + 2 = 0
4 - 2m = -2
2m = 6 \(\Rightarrow\)m = 3
b, m = 3 \(\Rightarrow\)f(x) = x2 + 3x + 2
f(x) = 0
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+2x+x+2=0\)
\(\Leftrightarrow x\left(2+x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=-2\end{cases}}\)
a) (-2)+m.(-2)+2=0 <=> m=3 b) f(x)=x2+3x+2
f(x) có tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận -1 làm một nghiệm.Như vậy f(x) có 2 nghiệm là -2 (theo câu a) và -1 ngoài ra ko còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là hai nghiệm.Do đó tập hợp các nghiệm của f(x) là S={-1:-2}
a) F(x) có nghiệm là 3
=> 3^2 - m.3 + 5 = 0
=> 9 - 3m + 5 = 0
=> 14 - 3m = 0
=> m = 14/3
b) m = 14/3
=> x^2 - 3.14/3 + 5 = 0
=> x^2 - 14 + 5 = 0
=> x^2 - 9 = 0
=> x^2 = 9
=> x = 3 hay x = -3
a, f(-2)=(-2)^2 + m(-2) + 2=0
<=>(-2)^2 - 2m + 2 = 0
<=>4 - 2m + 2=0
<=>-2m + 6=0
<=>-2m =-6
<=> m=3
b, Với m=3 ta có: f(x)=x^2+3x+2
Khi đó f(x)=x^2+3x+2=0
<=>x^2+3x+2=0
<=>(x+1)(x+2)=0
<=>x=-1 hoặc x=-2
f(-2) =0
<=>(-2)2 - 2m + 2 = 0
<=> m =3
b, Với m=3 ta có: f(x)=x2+3x+2
Khi đó f(x)=0
<=> x2+3x+2=0
<=> (x+1)(x+2)=0
<=> x =-1 hoặc x =-2.