K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

\(x^2-3x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x^2-2x-x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left|x-1\right|=\left(x-1\right)\left(2-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\left(x-1\right)\left(2-x\right)\left(x\ge1\right)\\x-1=\left(x-1\right)\left(x-2\right)\left(x< 1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(2-x-1\right)=0\\\left(x-1\right)\left(x-2-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=1\left(loai\right)\\x=3\left(loai\right)\end{matrix}\right.\end{matrix}\right.\)

1 tháng 5 2018

a) Để phương trình có nghiệm kép thì \(\Delta=0\)

<=> \(m^2-4=0\)

<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)

+) Với m = 2 thì phương trình có nghiệm kép là   (-1)

+) Với m = -2 thì phương trình có nghiệm kép là  (1)

b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)

Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1) 

AH
Akai Haruma
Giáo viên
30 tháng 7 2018

Lời giải:

Với mọi $x$ thuộc ĐKXĐ, ta luôn có:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)

Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:

\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)

Do đó pt vô nghiệm.

30 tháng 7 2018

nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?

11 tháng 2 2016

\(a.\)  \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)  \(\left(1\right)\)

Đặt  \(t=x^2+1\)   , khi đó phương trình \(\left(1\right)\)  trở thành:

\(t^2+3xt+2x^2=0\)

\(\Leftrightarrow\)  \(\left(t+x\right)\left(t+2x\right)=0\)

\(\Leftrightarrow\)  \(^{t+x=0}_{t+2x=0}\)

\(\text{*}\)  \(t+x=0\)

\(\Leftrightarrow\)  \(x^2+x+1=0\)

Vì  \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)  với mọi  \(x\)  nên phương trình vô nghiệm

\(\text{*}\)  \(t+2x=0\)

\(\Leftrightarrow\)  \(x^2+2x+1=0\)

\(\Leftrightarrow\)  \(\left(x+1\right)^2=0\)

\(\Leftrightarrow\)  \(x+1=0\)

\(\Leftrightarrow\)  \(x=-1\)

Vậy, tập nghiệm của pt là  \(S=\left\{-1\right\}\)

11 tháng 2 2016

\(b.\)  \(\left(x^2-9\right)^2=12x+1\)

\(\Leftrightarrow\)  \(x^4-18x^2+81-12x-1=0\)

\(\Leftrightarrow\)  \(x^4-18x^2-12x+80=0\)

\(\Leftrightarrow\)  \(x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)

\(\Leftrightarrow\)  \(x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)

\(\Leftrightarrow\)  \(\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)

\(\Leftrightarrow\)  \(\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)

  Vì  \(x^2+6x+10=\left(x+3\right)^2+1\ne0\)  với mọi  \(x\)

\(\Rightarrow\)  \(\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)  \(^{x_1=2}_{x_2=4}\)

Vậy,  phương trình đã cho có các nghiệm  \(x_1=2;\)  \(x_2=4\)

19 tháng 8 2017

c.

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Giải phương trình

  10. 10

    Đơn giản biểu thức

  11. 11

    Giải phương trình

  12. 12

    Đơn giản biểu thức

  13. 13

    Lời giải thu được

19 tháng 8 2017

a,

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Đơn giản biểu thức

  10. 10

    Lời giải thu được

28 tháng 2 2017

(x2+1)2+3x(x2+1)+2x2=0

<=> x4+1+2x2+3x3+3x+2x2=0

<=> x4+3x3+4x2+3x+1=0

<=> x4+x3+2x3+2x2+2x2+2x+x+1=0

<=> (x+1)(x3+2x2+2x+1)=0

<=> (x+1)(x3+x2+x2+x+x+1)=0

<=> (x+1)2(x2+x+1)=0

<=> \(\left(x+1\right)^2\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]=0\)

\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

=> x + 1 = 0

=> x = -1

Vậy ...

a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:

\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)

\(\Leftrightarrow x^2+2x-8=0\)(1)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)

Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)

b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)

\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)

\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)

\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là: 

\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)

Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)

\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)

\(\Leftrightarrow-2m+2-2m+2=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow-4m=-4\)

hay m=1

Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau

31 tháng 1 2021

a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi

b, Để PT có 2 nghiệm PB thì 

Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)

⇔Δ=(2m−2)^2+16>0∀m

Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1

Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1