Giai phuong trinh
a,x^2-3x+2+|x-1|=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phương trình có nghiệm kép thì \(\Delta=0\)
<=> \(m^2-4=0\)
<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
+) Với m = 2 thì phương trình có nghiệm kép là (-1)
+) Với m = -2 thì phương trình có nghiệm kép là (1)
b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)
Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)
Lời giải:
Với mọi $x$ thuộc ĐKXĐ, ta luôn có:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)
Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)
Do đó pt vô nghiệm.
nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?
\(a.\) \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\) \(\left(1\right)\)
Đặt \(t=x^2+1\) , khi đó phương trình \(\left(1\right)\) trở thành:
\(t^2+3xt+2x^2=0\)
\(\Leftrightarrow\) \(\left(t+x\right)\left(t+2x\right)=0\)
\(\Leftrightarrow\) \(^{t+x=0}_{t+2x=0}\)
\(\text{*}\) \(t+x=0\)
\(\Leftrightarrow\) \(x^2+x+1=0\)
Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\) với mọi \(x\) nên phương trình vô nghiệm
\(\text{*}\) \(t+2x=0\)
\(\Leftrightarrow\) \(x^2+2x+1=0\)
\(\Leftrightarrow\) \(\left(x+1\right)^2=0\)
\(\Leftrightarrow\) \(x+1=0\)
\(\Leftrightarrow\) \(x=-1\)
Vậy, tập nghiệm của pt là \(S=\left\{-1\right\}\)
\(b.\) \(\left(x^2-9\right)^2=12x+1\)
\(\Leftrightarrow\) \(x^4-18x^2+81-12x-1=0\)
\(\Leftrightarrow\) \(x^4-18x^2-12x+80=0\)
\(\Leftrightarrow\) \(x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)
\(\Leftrightarrow\) \(x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)
Vì \(x^2+6x+10=\left(x+3\right)^2+1\ne0\) với mọi \(x\)
\(\Rightarrow\) \(\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\) \(^{x_1=2}_{x_2=4}\)
Vậy, phương trình đã cho có các nghiệm \(x_1=2;\) \(x_2=4\)
c.
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Giải phương trình
10
Đơn giản biểu thức
11
Giải phương trình
12
Đơn giản biểu thức
13
Lời giải thu được
a,
Tập xác định của phương trình
2
Lời giải bằng phương pháp phân tích thành nhân tử
3
Sử dụng phép biến đổi sau
4
Giải phương trình
5
Đơn giản biểu thức
6
Giải phương trình
7
Đơn giản biểu thức
8
Giải phương trình
9
Đơn giản biểu thức
10
Lời giải thu được
(x2+1)2+3x(x2+1)+2x2=0
<=> x4+1+2x2+3x3+3x+2x2=0
<=> x4+3x3+4x2+3x+1=0
<=> x4+x3+2x3+2x2+2x2+2x+x+1=0
<=> (x+1)(x3+2x2+2x+1)=0
<=> (x+1)(x3+x2+x2+x+x+1)=0
<=> (x+1)2(x2+x+1)=0
<=> \(\left(x+1\right)^2\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]=0\)
Mà \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
=> x + 1 = 0
=> x = -1
Vậy ...
a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:
\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)
\(\Leftrightarrow x^2+2x-8=0\)(1)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)
Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)
b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)
\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)
Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)
\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)
\(\Leftrightarrow-2m+2-2m+2=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow-4m=-4\)
hay m=1
Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau
a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi
b, Để PT có 2 nghiệm PB thì
Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)
⇔Δ=(2m−2)^2+16>0∀m
Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1
Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1
\(x^2-3x+2+\left|x-1\right|=0\)
\(\Leftrightarrow x^2-2x-x+2+\left|x-1\right|=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)+\left|x-1\right|=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)+\left|x-1\right|=0\)
\(\Leftrightarrow\left|x-1\right|=\left(x-1\right)\left(2-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\left(x-1\right)\left(2-x\right)\left(x\ge1\right)\\x-1=\left(x-1\right)\left(x-2\right)\left(x< 1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(2-x-1\right)=0\\\left(x-1\right)\left(x-2-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=1\left(loai\right)\\x=3\left(loai\right)\end{matrix}\right.\end{matrix}\right.\)