K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

Để hpt vô nghiệm thì:

\(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\) \(\Rightarrow\) \(\dfrac{a}{a'}=\dfrac{b}{b'}\) \(\Leftrightarrow\) \(\dfrac{m}{2}=\dfrac{-8}{-6}\) \(\Leftrightarrow\) \(6m=16\)

\(\Leftrightarrow\) \(m=\dfrac{8}{3}\)

Bấm máy thử lại là đúng

NV
12 tháng 9 2021

ĐKXĐ: \(xy\ne0\)

- Với \(m=0\Rightarrow x=y=0\) (ktm ĐKXĐ) \(\Rightarrow\) hpt vô nghiệm (ktm)

- Với \(m\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}x^2-2xy=my\\y^2-2xy=mx\end{matrix}\right.\)

\(\Rightarrow x^2-y^2=m\left(y-x\right)\)

\(\Rightarrow\left(x-y\right)\left(x+y+m\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}y=x\\y=-x-m\end{matrix}\right.\)

- Với \(y=x\Rightarrow-x=m\Rightarrow x=y=-m\)

- Với \(y=-x-m\)

\(\Rightarrow x^2-2x\left(-x-m\right)=m\left(-x-m\right)\)

\(\Rightarrow3x^2+3mx+m^2=0\) 

\(\Delta=9m^2-12m^2=-3m^2< 0\Rightarrow\) luôn vô nghiệm với \(m\ne0\)

Vậy với \(m\ne0\) hệ có nghiệm duy nhất \(x=y=-m\) (thỏa mãn)

\(\Rightarrow m\ne0\)

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=2\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=4\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+10=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=5\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(-8;5)

b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+2\\2x+3y=m-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=m+4\\x+2\cdot\left(m+4\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2m+8=m+1\\y=m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-m-7\\y=m+4\end{matrix}\right.\)

Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì \(\left\{{}\begin{matrix}-m-7>3\\m+4< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>10\\m< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -10\\m< 1\end{matrix}\right.\Leftrightarrow m< -10\)

Vậy: Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì m<-10

NV
26 tháng 12 2018

\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)

\(\Rightarrow x^2+y^2=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)

\(\Rightarrow\left(x^2+y^2\right)_{min}=\dfrac{9}{2}\) khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)

NV
4 tháng 2 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=m-6\\\left(m+3\right)x-2y=4m-13\end{matrix}\right.\)

Theo điều kiện có nghiệm duy nhất của hệ thì:

\(\frac{m+3}{1}\ne\frac{-2}{-1}\Leftrightarrow m\ne-1\)

Khi đó: \(\left\{{}\begin{matrix}x-y+6=m\\3x-2y+13=4m-mx\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y+6=m\\\frac{3x-2y+13}{4-x}=m\end{matrix}\right.\) \(\Rightarrow x-y+6=\frac{3x-2y+13}{4-x}\)

Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m

Muốn chắc chắn hơn, bạn có thể biện luận riêng trường hợp \(x=4\)

19 tháng 3 2021

a. 

 \(\left\{{}\begin{matrix}x-2y=4.3-5\\2x+y=3.3\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x-2y=7\\2x+y=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}-2x+4y=-14\\2x+y=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}5y=-5\\2x+y=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}y=-1\\2x-1=9\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}y=-1\\x=5\end{matrix}\right.\)

Vậy nghiệm của hpt là: (5;1)