\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3.\left(m+2\right)\end{matrix}\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2018

\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)

\(\Rightarrow x^2+y^2=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)

\(\Rightarrow\left(x^2+y^2\right)_{min}=\dfrac{9}{2}\) khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)

NV
4 tháng 2 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=m-6\\\left(m+3\right)x-2y=4m-13\end{matrix}\right.\)

Theo điều kiện có nghiệm duy nhất của hệ thì:

\(\frac{m+3}{1}\ne\frac{-2}{-1}\Leftrightarrow m\ne-1\)

Khi đó: \(\left\{{}\begin{matrix}x-y+6=m\\3x-2y+13=4m-mx\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y+6=m\\\frac{3x-2y+13}{4-x}=m\end{matrix}\right.\) \(\Rightarrow x-y+6=\frac{3x-2y+13}{4-x}\)

Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m

Muốn chắc chắn hơn, bạn có thể biện luận riêng trường hợp \(x=4\)

9 tháng 2 2020

a, Ta có ( I ) : \(\left\{{}\begin{matrix}x+y=5\\xy=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\y\left(5-y\right)=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\5y-y^2-5=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\y^2-5y+5=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\y^2-2.\frac{5}{2}y+\left(\frac{5}{2}\right)^2-1,25=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\\left(y-2,5\right)^2=1,25\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=5-y\\\left[{}\begin{matrix}y-2,5=\frac{\sqrt{5}}{2}\\y-2,5=-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=5-\frac{\sqrt{5}}{2}-2,5=\frac{5-\sqrt{5}}{2}\\x=5-2,5+\frac{\sqrt{5}}{2}=\frac{15-\sqrt{5}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}y=\frac{\sqrt{5}}{2}+2,5\\y=2,5-\frac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình có 2 nghiệm là : \(\left(x,y\right)=\left(\frac{5-\sqrt{5}}{2},\frac{5+\sqrt{5}}{2}\right),\left(\frac{15-\sqrt{5}}{2},\frac{5-\sqrt{5}}{2}\right)\) .

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=2\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=4\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+10=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=5\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(-8;5)

b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+2\\2x+3y=m-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=m+4\\x+2\cdot\left(m+4\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2m+8=m+1\\y=m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-m-7\\y=m+4\end{matrix}\right.\)

Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì \(\left\{{}\begin{matrix}-m-7>3\\m+4< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>10\\m< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -10\\m< 1\end{matrix}\right.\Leftrightarrow m< -10\)

Vậy: Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì m<-10

9 tháng 11 2018

\(\left\{{}\begin{matrix}x^3+y^3=^{ }1\left(1\right)\\x^5+y^5=x^2+y^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow x^5-x^2+y^5-y^2=0\)

\(\Leftrightarrow x^2\left(x^3-1\right)+y^2\left(y^3-1\right)=0\)

\(\Leftrightarrow x^2\left(-y\right)^3+y^2\left(-x\right)^3=0\)

\(\Leftrightarrow x^2y^3+y^2x^3=0\)

\(\Leftrightarrow x^2y^2\left(x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\y=0\Rightarrow x=1\\x=-y\left(loại\right)\end{matrix}\right.\)

11 tháng 11 2018

hpt

24 tháng 12 2019

HPT\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=1-2xy\\\left(x+y\right)\left(1-2xy\right)=x+3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^2+xy=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=1\\y=-\sqrt{2};\sqrt{2}\end{matrix}\right.\)

The vao roi tinh la xong