Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(xy\ne0\)
- Với \(m=0\Rightarrow x=y=0\) (ktm ĐKXĐ) \(\Rightarrow\) hpt vô nghiệm (ktm)
- Với \(m\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2-2xy=my\\y^2-2xy=mx\end{matrix}\right.\)
\(\Rightarrow x^2-y^2=m\left(y-x\right)\)
\(\Rightarrow\left(x-y\right)\left(x+y+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y=x\\y=-x-m\end{matrix}\right.\)
- Với \(y=x\Rightarrow-x=m\Rightarrow x=y=-m\)
- Với \(y=-x-m\)
\(\Rightarrow x^2-2x\left(-x-m\right)=m\left(-x-m\right)\)
\(\Rightarrow3x^2+3mx+m^2=0\)
\(\Delta=9m^2-12m^2=-3m^2< 0\Rightarrow\) luôn vô nghiệm với \(m\ne0\)
Vậy với \(m\ne0\) hệ có nghiệm duy nhất \(x=y=-m\) (thỏa mãn)
\(\Rightarrow m\ne0\)
mấy bài này là ở lớp 9 học kì 2 dùng cộng đại số là nhanh nhất hoặc bấm máy tính
a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.
b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.
1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)
\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)
Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :
\(\sqrt{4y}+\sqrt{y+1}=2\)
\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)
Giải pt thu được (x;y)
Th2:x=-y thay vào \(\left(\circledast\right)\), ta có
\(\sqrt{-2x}+\sqrt{y+1}=2\)
Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)
Vậy ....
2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)
\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)
Th1:\(x=y+1\)
Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)
Th2:\(x=-y^2\)thay vào ta có:
\(\sqrt{-y^2}+\sqrt{y+1}=2\)
vì \(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt
\(\Rightarrow\)Pt vô nghiệm
Để hpt vô nghiệm thì:
\(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\) \(\Rightarrow\) \(\dfrac{a}{a'}=\dfrac{b}{b'}\) \(\Leftrightarrow\) \(\dfrac{m}{2}=\dfrac{-8}{-6}\) \(\Leftrightarrow\) \(6m=16\)
\(\Leftrightarrow\) \(m=\dfrac{8}{3}\)
Bấm máy thử lại là đúng