Cho hai đa thức P(x)= x^5 - x^4 và Q(x)= x^4 - x^3
Tìm đa thức R(x) sao cho P(x) + Q(x) + R(x) là đa thức không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : \(P\left(x\right)+Q\left(x\right)+R\left(x\right)=0\)
\(\Leftrightarrow x^5-x^4+x^4-x^3+R\left(x\right)=0\)
\(\Leftrightarrow x^5-x^3=R\left(x\right)\)
Từ những Đk trên suy ra : \(P\left(x\right)+Q\left(x\right)+R\left(x\right)=x^5-x^4+x^4-x^3+x^5-x^3=0\)
\(\Leftrightarrow2x^5-2x^3=0\)
Vậy P(x) + Q(x) + R(x) là đa thức.
Ta có : \(P\left(x\right)+Q\left(x\right)+R\left(x\right)\)
\(\Leftrightarrow\left(x^5-x^4\right)+\left(x^4-x^3\right)+R\left(x\right)\)
\(\Leftrightarrow x^5-x^4+x^4-x^3+R\left(x\right)\)
\(\Leftrightarrow x^5-x^3+R\left(x\right)\)Đặt \(x^5-x^3+R\left(x\right)=0\)
\(\Leftrightarrow R\left(x\right)=-x^5+x^3\) => Đa thức chứ còn j nữa =))
Theo đề bài ta có : \(P\left(x\right)+Q\left(x\right)+R\left(x\right)=0\)
\(\Rightarrow\left(x^5-x^4\right)+\left(x^4-x^3\right)+R\left(x\right)=0\)
\(\Leftrightarrow x^5-x^4+x^4-x^3+R\left(x\right)=0\)
\(\Leftrightarrow x^5-x^3+R\left(x\right)=0\)
\(\Rightarrow R\left(x\right)=x^3-x^5\)
Vậy đa thức \(R\left(x\right)=x^3-x^5\)
a. \(x^4-5x^3+4x-5-x^4+3x^2+2x+1\)
\(=-5x^3+3x^2+6x-4\)
b. \(R\left(x\right)=x^4-5x^3+4x-5-\left(-x^4+3x^2+2x+1\right)\)
\(=x^4-5x^3+4x-5+x^4-3x^2-2x-1\)
\(=2x^4-5x^3-3x^2+2x-6\)
`@` `\text {dnv4510}`
`A)`
`P(x)+Q(x)=`\((2x^4+3x^2-3x^2+6)+(x^4+x^3-x^2+2x+1)\)
`= 2x^4+3x^2-3x^2+6+x^4+x^3-x^2+2x+1`
`= (2x^4+x^4)+x^3+(3x^2-3x^2-x^2)+2x+(6+1)`
`= 3x^4+x^3-x^2+2x+7`
`B)`
`P(x)+M(x)=2Q(x)`
`-> M(x)= 2Q(x) - P(x)`
`2Q(x)=2(x^4+x^3-x^2+2x+1)`
`= 2x^4+2x^3-2x^2+4x+2`
`-> 2Q(x)-P(x)=(2x^4+2x^3-2x^2+4x+2)-(2x^4+3x^2-3x^2+6)`
`= 2x^4+2x^3-2x^2+4x+2-2x^4-3x^2+3x^2-6`
`= (2x^4-2x^4)+2x^3+(-2x^2-3x^2+3x^2)+4x+(2-6)`
`= 2x^3-2x^2+4x-4`
Vậy, `M(x)=2x^3-2x^2+4x-4`
`C)`
Thay `x=-4`
`M(-4)=2*(-4)^3-2*(-4)^2+4*(-4)-4`
`= 2*(-64)-2*16-16-4`
`= -128-32-16-4`
`= -180`
`->` `x=-4` không phải là nghiệm của đa thức.
Giải:
Ta có:
\(P\left(x\right)+Q\left(x\right)+R\left(x\right)=0\)
\(\Leftrightarrow R\left(x\right)=-P\left(x\right)-Q\left(x\right)\)
\(\Leftrightarrow R\left(x\right)=-\left(x^5-x^4\right)-\left(x^4-x^3\right)\)
\(\Leftrightarrow R\left(x\right)=-x^5+x^4-x^4+x^3\)
\(\Leftrightarrow R\left(x\right)=x^3-x^5\)
Vậy ...