tìm x, y, z biết
\(\dfrac{x}{10}=\dfrac{y}{14}=\dfrac{z}{15}\) và xy+yz+xz=2000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
Áp dụng bất đẳng thức AM - GM:
\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).
Áp dụng bất đẳng thức AM - GM ta có:
\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).
Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).
Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)
\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).
Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)
Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)
\(\Rightarrow P\ge\dfrac{15}{2}\).
Vậy...
Áp dụng bất đẳng thức AM - GM:
P≥33√(xy+1)(yz+1)(zx+1)xyz.
Áp dụng bất đẳng thức AM - GM ta có:
xy+1=xy+14+14+14+14≥55√xy44.
Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.
Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412
⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.
Mà xyz≤(x+y+z)327=18
Nên (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258
⇒P≥152.
\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
\(\dfrac{1}{\left(x-y\right)\left(z^2+yz-x^2-xz\right)}=\dfrac{1}{\left(x-y\right)\left[\left(z-x\right)\left(z+x\right)+y\left(z-x\right)\right]}=\dfrac{1}{\left(z-x\right)\left(x-y\right)\left(x+y+z\right)}\)
Tương tự: \(\dfrac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}=\dfrac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}\)
\(\dfrac{1}{\left(z-x\right)\left(y^2+xy-z^2-xz\right)}=\dfrac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}\)
\(\Rightarrow M=\dfrac{y-z-z+x-x+y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}\\ M=\dfrac{2}{\left(x-y\right)\left(z-x\right)\left(x+y+z\right)}\)
Để M xác định thì \(x,y,z\ne0\)
\(xy+xz+yz=0\Rightarrow\left\{{}\begin{matrix}\dfrac{xy}{z}+x+y=0\\\dfrac{xz}{y}+x+z=0\\\dfrac{yz}{x}+y+z=0\end{matrix}\right.\)
Cộng vế với vế ta được:
\(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}+2\left(x+y+z\right)=0\)
\(\Leftrightarrow M+2.\left(-1\right)=0\Rightarrow M=2\)
Ta có :
\(xy+yz+xz=0\\ \Rightarrow\left[{}\begin{matrix}xy=-xz-yz=-z\left(x+y\right)\\yz=-xy-xz=-x\left(y+z\right)\\xz=-xy-yz=-y\left(x+z\right)\end{matrix}\right.\)
\(M=\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}=\dfrac{-z\left(x+y\right)}{z}+\dfrac{-y\left(x+z\right)}{y}+\dfrac{-x\left(y+z\right)}{x}\\ =-\left(x+y\right)-\left(x+z\right)-\left(y+z\right)=-x-y-x-z-y-z\\ =-2\left(x+y+z\right)=\left(-2\right)\cdot\left(-1\right)=2\)
\(\Rightarrow M=2\)
Đặt \(\dfrac{x}{10}=\dfrac{y}{14}=\dfrac{z}{15}=k\)
⇔\(\left\{{}\begin{matrix}x=10k\\y=14k\\z=15k\end{matrix}\right.\)
Thay x = 10k; y = 14k và z = 15k vào xy + yz + xz = 2000 ta được :
140.k.k + 210.k.k + 150.k.k = 2000
⇔k.k .( 140 + 210 + 150 ) = 2000
\(\Leftrightarrow k^2\cdot500=2000\\ \Leftrightarrow k^2=4\\ \Leftrightarrow\left\{{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
* Với k = 2, \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=28\\z=30\end{matrix}\right.\)
*Với k = -2, \(\Rightarrow\left\{{}\begin{matrix}x=-20\\y=-28\\z=-30\end{matrix}\right.\)
Vậy ...................