K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 4 2020

\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)

\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)

\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)

\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)

\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)

\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)

24 tháng 8 2021

tana = 3/4.
=>cota=1/ tana =1:3/4=4/3
sina /cosa =tana
=> sina =tana .cosa =3/4. cosa
lại có sin^2(a)+cos^2(a)=1
<=>9/16cos^2(a)+cos^2=1
<=>25/16cos^2(a)=1
<=>cos^2(a)=16/25
=>[cosa =4/5=>sina =3/5
    [cosa =-4/5=> sina =-2/5

22 tháng 1 2022

Lung tung hả

19 tháng 10 2021

\(\sin^2\widehat{A}+\cos^2\widehat{A}=1\Leftrightarrow\cos^2\widehat{A}=1-\dfrac{16}{25}=\dfrac{9}{25}\\ \Leftrightarrow\cos\widehat{A}=\dfrac{3}{5}\\ \tan\widehat{A}=\dfrac{\sin\widehat{A}}{\cos\widehat{A}}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\\ \cot\widehat{A}=\dfrac{1}{\tan\widehat{A}}=\dfrac{3}{4}\)

19 tháng 10 2021

\(\sin A=0,8\Rightarrow A=arcsin0,8_{ }\)

\(\Rightarrow\cos A=cos\left(arcsin0,8\right)=\dfrac{3}{5}\)

     tanA=tan(arcsin0,8)=4/3

     cotA=1:4/3=3/4

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

Do góc $a$ nhọn nên các tỉ số lượng giác mang giá trị dương.

Áp dụng công thức $\sin ^2a+\cos ^2a=1$

$\Rightarrow \cos^2 a=1-\sin ^2a=1-0,28^2=0,9216$

$\Rightarrow \cos a=\frac{24}{25}=0,96$

$\tan a=\frac{\sin a}{\cos a}=\frac{0,28}{0,96}=\frac{7}{24}$

$\cot a=\frac{1}{\tan a}=\frac{24}{7}$