Rút gọn:
(-2007x4y3)5.\(\left(-\dfrac{1}{2007}x^4y\right)^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi đa thức là $T$
\(T=(\frac{-2007}{3})^8(xy)^8.(\frac{-6}{2007})^8(x^2y)^8\)
\(=\frac{2007^8}{3^8}.x^8y^8.\frac{6^8}{2007^8}.x^{16}.y^8\)
\(=\frac{6^8}{3^8}.x^{8+16}.y^{8+8}=2^8.x^{24}y^{16}\)
Ta có: \(\left(-\dfrac{2007}{3}xy\right)^8\cdot\left(-\dfrac{6}{2007}x^2y\right)^8\)
\(=\left(\dfrac{2007}{3}\cdot\dfrac{6}{2007}\right)^8\cdot x^8\cdot x^{16}\cdot y^8\cdot y^8\)
\(=256x^{24}y^{16}\)
\(A=3x\left(x-4y\right)-\dfrac{12}{5}y\left(y-5x\right)\)
\(A=3x^2-12xy-\dfrac{12}{5}y^2+12xy\)
\(A=3x^2-\dfrac{12}{5}y^2\)
Thay \(x=4;y=-5\) vào A ta được:
\(3\cdot4^2-\dfrac{12}{5}\cdot\left(-5\right)^2=48-60=-12\)
Vậy ....
\(a,N=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)\left(x^4-y^4\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\\ N=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x+y\right)}=x^2+y^2\\ b,N=\left(x+y\right)^2-2xy=0-2\cdot1=-2\)
ĐKXĐ: \(x\ne y\)
a) \(N=\dfrac{x^2+y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}:\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x^4\left(x-y\right)-y^4\left(x-y\right)}=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x+y\right)}.\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}=x^2+y^2\)
b) \(x+y=0\Leftrightarrow\left(x+y\right)^2=0\Leftrightarrow x^2+y^2-2xy=0\)
\(\Leftrightarrow N=x^2+y^2=0+2xy=2.1=2\)
\(sin\left(x\right)+\left[sin\left(x+\dfrac{2\pi}{5}\right)-sin\left(x+\dfrac{\pi}{5}\right)\right]+\left[sin\left(x+\dfrac{4\pi}{5}\right)-sin\left(x+\dfrac{3\pi}{5}\right)\right]\)
\(=sin\left(x\right)+2cos\left(x+\dfrac{3\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)+2cos\left(x+\dfrac{7\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)\)
\(=sin\left(x\right)+2sin\left(\dfrac{\pi}{10}\right)\left[cos\left(x+\dfrac{3\pi}{10}\right)+cos\left(x+\dfrac{7\pi}{10}\right)\right]\)
\(=sin\left(x\right)+4sin\left(\dfrac{\pi}{10}\right)cos\left(\dfrac{\pi}{5}\right)cos\left(x+\dfrac{\pi}{2}\right)\)
\(=sin\left(x\right)+cos\left(x+\dfrac{\pi}{2}\right)\)
\(=sin\left(x\right)+cos\left(x\right)cos\left(\dfrac{\pi}{2}\right)-sin\left(x\right)sin\left(\dfrac{\pi}{2}\right)\)
\(=sin\left(x\right)-sin\left(x\right)\)
\(=0\)
2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
1: Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}-\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
\(=\left(\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right):\dfrac{25-x-x+9-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-3x+59}\)
\(=\dfrac{-5\left(\sqrt{x}-3\right)}{-3x+59}\)
\(=\dfrac{5\sqrt{x}-15}{3x-59}\)
2: Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
Ta có: \(Q=\left(\dfrac{1}{x+5}+\dfrac{1}{x-5}\right):\dfrac{2x}{x^2-25}\)
\(=\left(\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}+\dfrac{x+5}{\left(x-5\right)\left(x+5\right)}\right):\dfrac{2x}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x-5+x+5}{\left(x+5\right)\left(x-5\right)}:\dfrac{2x}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x}{\left(x+5\right)\left(x-5\right)}\cdot\dfrac{\left(x-5\right)\left(x+5\right)}{2x}\)
\(=1\)
Có: \(x^2-25=\left(x-5\right)\left(x+5\right)\)
ĐKXĐ của Q là x ≠ 5; x ≠ -5
Mà theo đề: x = 5; x = -5
=> Ko có giá trị của Q tìm đc
(-2007\(x^9y^8\)) .(-\(\dfrac{-1}{2017}x^9y^5\)) = (\(-2007.\dfrac{-1}{2007}\)) . ( \(x^9y^8x^9y^5\)) = \(x^{18}y^{13}\)