Cho tam giác ABC có ba góc nhọn (AB < AC) kẻ tia Cx vuông góc với tia phân giác của BAC tại M . Tia Cx cắt tia AB tại K. Tia AM cắt BC tại N.
a. Chứng minh tam giác AKC cân.
b. Chứng minh tam giác KNC cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AM cắt DE tại I
Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)
\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)
Do \(\Delta AID\)vuông tại I suy ra
\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)
\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)
\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)
Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra
\(\widehat{MFC}=\widehat{ACF}\)
Mà
\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF
Mà MB=MC suy ra \(\Delta BFC\) có FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\) \(\Delta BFC\)vuông tại F hay \(BF\perp CF\left(đpcm\right)\)
hình như bạn chép sai đề bài rồi.sao lại AB=6cm,AB=8cm là sao?
Đó chỉ là số đo thôi, bỏ qua nó đi. Câu a của mình là tính BC.
Cm: Xét t/giác BAM và t/giác BEM
có góc A = góc MEB = 900 (gt)
BM : chung
góc ABM = góc MBE (gt)
=> t/giác BAM = t/giác BEM (ch -gn)
b) Ta có: t/giác BAM = t/giác BEM (cmt)
=> AB = BE (hai cạnh tương ứng)
=> t/giác BAE là t/giác cân tại B
c) Do t/giác BAM = t/giác BEM (cmt)
=> AM = EM (hai cạnh tương ứng)
Ta có: góc BAM + góc MAK = 1800
=> góc MAK = 1800 - 900 = 900 => góc MAK = góc MEC
Xét t/giác AMK và t/giác EMC
có góc MAK = góc MEC = 900 (cmt)
AM = EM (cmt)
góc AMK = góc EMC (đối đỉnh)
=> t/giác AMK = t/giác EMC (g.c.g)
=> AK = EC (hai cạnh tương ứng)
Mà AB + AK = BK
BE + EC = BC
và AB = BE (Cmt)
=> BK = BC => t/giác BKC là t/giác cân tại B
a)Xét \(\Delta\)AKM và \(\Delta\)ACM đều vuông tại M:
AM là cạnh chung.
\(\widehat{KAM}=\widehat{CAM}(gt)\)
=>\(\Delta\)AKM=\(\Delta\)ACM
=> AK=AC
=> \(\Delta\)AKC cân ở A
b)Xét \(\Delta\)AKN và \(\Delta\)ACN:
\(\widehat{KAM}=\widehat{CAM}(gt)\)
AN là cạnh chung
AK=AC(cmt)
=> \(\Delta\)AKN=\(\Delta\)ACN
=>KN=NC
=>\(\Delta\)NKC cân ở N
Chúc bạn học tốt!