1. tim cac so nguyen x, y biet
a.\(\dfrac{x}{2}\)bang\(\dfrac{-6}{3}\)
b. \(\dfrac{2}{x}\)bang \(\dfrac{y}{-3}\)
c. \(\dfrac{x}{y}\)bang\(\dfrac{-3}{11}\)
d. \(\dfrac{x}{y-1}\)bang\(\dfrac{5}{-19}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A \(\dfrac{3}{x-y}\)
b \(\dfrac{5}{x+y}\)
c \(\dfrac{2x-x^2}{x+1}\)
1.
Cách 1: Tính bằng công thức
\(\left\{\begin{matrix} y=x-1(x>1)\\ y=1-x(x<1)\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y'=1(x>1)\\ y'=-1(x<1)\end{matrix}\right.\)
Tóm gọn lại: $y'=\frac{|x-1|}{x-1}$
Cách 2: Tính bằng định nghĩa.
\(y'=\lim\limits_{x\to 1}\frac{|x-1|-0}{x-1}=\frac{|x-1|}{x-1}\)
2. Với $x\in (0;\pi)$ thì:
\(y=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{\cos x+1}{2}}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\cos ^2\frac{x}{2}}}}\)
\(=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\cos \frac{x}{2}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\cos ^2\frac{x}{4}}}=\sqrt{\frac{1}{2}+\frac{1}{2}\cos \frac{x}{4}}=\sqrt{\cos ^2\frac{x}{8}}=\cos \frac{x}{8}\)
\(\Rightarrow y'=-\frac{1}{8}\sin \frac{x}{8}\)
1.
\(\left(\dfrac{-1}{8}+\dfrac{-5}{6}\right)\cdot\dfrac{6}{23}\\ =-\dfrac{23}{24}\cdot\dfrac{6}{23}\\ =-\dfrac{6}{24}=-\dfrac{1}{4}\)
2. Xem lại đề nha!
4.
\(x+0,75=-1\dfrac{1}{4}\\ x+\dfrac{3}{4}=-\dfrac{3}{4}\\ x=-\dfrac{3}{4}-\dfrac{3}{4}\\ x=-\dfrac{3}{4}+\left(-\dfrac{3}{4}\right)=-\dfrac{6}{4}=-\dfrac{3}{2}\)
5.
\(\dfrac{x}{28}=-\dfrac{4}{7}\\ \Leftrightarrow7x=-4.28\\ \Rightarrow7x=-112\\ \Rightarrow x=-112:7=-16\)
6.
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{9}\Leftrightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Vậy giá trị của tỉ số \(\dfrac{x}{y}=\dfrac{7}{9}\).
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
\(a,\dfrac{x}{5}=\dfrac{-18}{10}\\ \Rightarrow x=-\dfrac{18}{10}.5\\ \Rightarrow x=-9\\ b,\dfrac{6}{x-1}=\dfrac{-3}{7}\\ \Rightarrow6.7=-3\left(x-1\right)\\ \Rightarrow42=-3x+3\\ \Rightarrow42+3x-3=0\\ \Rightarrow3x+39=0\\ \Rightarrow3x=-39\\ \Rightarrow x=-13\\ c,\dfrac{y-3}{12}=\dfrac{3}{y-3}\\ \Rightarrow\left(y-3\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}y-2=6\\y-2=-6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}y=8\\y=-4\end{matrix}\right.\)
\(d,\dfrac{x}{25}=\dfrac{-5}{x^2}\\ \Rightarrow x^3=-125\\ \Rightarrow x^3=\left(-5\right)^3\\ \Rightarrow x=-5\)
b:
ĐKXĐ: x<>0
\(\dfrac{2}{x}+\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{6+xy}{3x}=\dfrac{1}{6}\)
=>\(6\left(6+xy\right)=3x\)
=>\(x=2\left(6+xy\right)=12+2xy\)
=>\(x\left(1-2y\right)=12\)
mà x,y là các số nguyên
nên \(\left(x;1-2y\right)\in\left\{\left(12;1\right);\left(-12;-1\right);\left(4;3\right);\left(-4;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(12;0\right);\left(-12;1\right);\left(4;-1\right);\left(-4;2\right)\right\}\)
c: ĐKXĐ: y<>-1
\(\dfrac{x}{3}+\dfrac{1}{y+1}=\dfrac{1}{6}\)
=>\(\dfrac{xy+x+3}{3\left(y+1\right)}=\dfrac{1}{6}\)
=>\(\dfrac{2\left(xy+x+3\right)}{6\left(y+1\right)}=\dfrac{y+1}{6\left(y+1\right)}\)
=>\(2xy+2x+6=y+1\)
=>\(2x\left(y+1\right)-\left(y+1\right)=-6\)
=>\(\left(2x-1\right)\left(y+1\right)=-6\)
mà x,y là các số nguyên
nên \(\left(2x-1;y+1\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(3;-2\right);\left(-3;2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(0;5\right);\left(2;-3\right);\left(-1;1\right)\right\}\)
\(\left\{{}\begin{matrix}4x+3x=-6\\\dfrac{x+3y}{3}-\dfrac{y-2}{5}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7x=-6\\\dfrac{5\left(x+3y\right)-3\left(y-2\right)}{15}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\5x+15y-3y+6=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\12y=9-5x=9+5\cdot\dfrac{6}{7}=9+\dfrac{30}{7}=\dfrac{93}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{6}{7}\\y=\dfrac{93}{7\cdot12}=\dfrac{93}{84}=\dfrac{31}{28}\end{matrix}\right.\)
a, \(\dfrac{x}{2}=-\dfrac{5}{y}\Rightarrow xy=-10\Rightarrow x;y\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
y | -10 | 10 | -5 | 5 | -2 | 2 | -1 | 1 |
c, \(\dfrac{3}{x-1}=y+1\Rightarrow\left(y+1\right)\left(x-1\right)=3\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 1 | 1 | -1 | 3 | -3 |
y + 1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 2 | -4 | 0 | -2 |
b: =>xy=12
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
a) \(\dfrac{x}{2}=-\dfrac{6}{3}=-2\Rightarrow x=2.\left(-2\right)=-4\)
b) \(\dfrac{2}{x}=\dfrac{y}{-3}\Leftrightarrow y=-\dfrac{6}{x}\) y thuộc Z => x thuộc {+-6;+-3;+-2;+-1}
(x;y) =(-6;1);(-3;2); (-2;3);(-1;6) ; (6;-1);(3-2);(2;-3);(1;-6)