Cho hai số tự nhiên x và y thõa mãn 2x+1 . 3y = 12x.
Khi đó x + y = ....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau:
(2x+1)/5=(3y-2)/7=(2x+3y-1)/12
mà (2x+1)/5=(3y-2)/7=(2x+3y-1)/(6x)
=> 6x=12 => x=2
(3y-2)/7=(2x+1)/5=5/5=1
=> (3y-2)/7=1 => y=3
vì \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)\(\Rightarrow\frac{2x+1+3y-2}{5+7}\)=\(\frac{2x+3y-1}{6x}\)
\(=\frac{2x+3y-1}{12}\)=\(\frac{2x+3y-1}{6x}\)\(\Rightarrow12=6x\)
vậy x=2;y=3
x+y=5
Giải : Ta có : 2x + 1 là số lẻ
=> 2|x| + y2 + y là số lẻ
Do y2 + y = y(y + 1) là 2 số tự nhiên liên tiếp => y2 + y là số chẵn
=> 2|x| là số lẻ <=> 2|x| = 1 <=> |x| = 0 <=> x = 0
Với x = 0 => 1 + y2 + y = 2.0 + 1
=> y2 + y + 1 = 1
=> y(y + 1) = 1 - 1
=> y(y + 1) = 0
=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Do x; y \(\in\)N <=> x = y = 0
ta phân tích ra thừa số nguyên tố : 10=2.5
suy ra : (2x+1)=5
(y-3)=2
suy ra : x=2
y=5
( 2x + 1 ) ( y + 3 ) = 10
Lập bảng ta có :
2x+1 | 1 | 10 | 2 | 5 |
y+3 | 10 | 1 | 5 | 2 |
x | 0 | 9/2 | 1/2 | 2 |
y | 7 | -2 | 2 | -1 |
vì x,y thuộc N nên ( x ; y ) = ( 0 ; 7 )
10 có các ước là: \(\pm2,\pm5\).
x là số tự nhiên nên 2x +1 cũng là một số tự nhiên, mặt khác do 2x + 1 là một số lẻ nên 2x +1 = 5 hay x = 2.
Từ đó suy ra \(y-3=10:5=2\Leftrightarrow y=5\).
x = y = 1
=> x+ y = 2
\(2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
=> x+ 1 = 2x và x = y
=> x = 1 và x = y= 1