cho hai tam giác a'b'c'(a'b'=a'c') và tam giác abc(ab=ac) đồng dạng với nhau theo ti số đòng dạng k chứng minh tỉ số của 2 đường cao a'h' và ah cũng bằng k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\text{Δ A'B'C' ∼ Δ ABC}\) theo tỉ số đồng dạng k = \(\dfrac{3}{5}\)
⇒ \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=k=\dfrac{3}{5}\) (1)
Áp dúng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=\dfrac{A'B'+B'C'+A'C'}{AB+BC+AC}=\dfrac{C_{A'B'C'}}{C_{ABC}}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{5}\) (*)
b)
Theo đề ra, ta có:
\(C_{ABC}-C_{A'B'C'}=40\left(dm\right)\)
⇒ \(C_{ABC}=40+C_{A'B'C'}\) (**)
Thay (**) vào (*), ta được:
\(\dfrac{C_{A'B'C'}}{40+C_{A'B'C'}}=\dfrac{3}{5}\)
⇒ \(5C_{A'B'C'}=120+3C_{A'B'C'}\)
⇔ \(2C_{A'B'C'}=120\)
⇒ \(C_{A'B'C'}=60\) (dm)
⇒ \(C_{ABC}=40+60=100\) (dm)
a: Xét ΔOKM và ΔONH có
OK=ON
\(\widehat{MOK}\) chung
OM=OH
Do đó: ΔOKM=ΔONH
Xét hai tam giác ABC và tam giác MNP có A ^ = M ^ , B ^ = N ^ .
Để hai tam giác ABC và MNP bằng nhau cần điều kiện A B = M N theo trường hợp góc – cạnh – góc .
Chọn đáp án B.
a) Đúng. Khi đó, ∆ABC = ∆FDE ( g.c.g)
b) Sai;
c) Đúng.
+)Vì ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc của tam giác).
Và ∠D + ∠E + ∠F = 180º ( tổng ba góc của tam giác)
+) Lại có; ∠B = ∠D; ∠C = ∠E nên ∠A = ∠F
+) Kết hợp giả thiết suy ra: ∆ABC = ∆ FDE ( g.c.g)
Vì ∠A =∠F nên đỉnh A tương ứng với đỉnh F
Vì ∠B =∠E nên đỉnh B tương ứng với đỉnh E
Suy ra đỉnh C tương ứng với đỉnh D
Vậy ΔABC=ΔFED
a: Xét ΔODC và ΔOBE có
OD=OB
\(\widehat{O}\) chung
OC=OE
Do đó: ΔODC=ΔOBE
Câu b và c đề sai rồi bạn
- Diện tích hai hình vuông màu xanh trong hình 1a là: \(a^2+b^2\)
- Diện tích hình vuông màu xanh trong hình 1b là: \(c^2\)
- Vậy \(a^2+b^2=c^2\)