K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Hỏi đáp Toán

19 tháng 4 2020

a) Xét tam giác BAD và CAD có:

AB=AC=14cm

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác)

AD cạnh chung

=> \(\Delta BAD=\Delta CAD\left(c.g.c\right)\)

=> BD=CD

Mà BD+CD=BC=12 cm

=> BD=DC=12:2=6(cm)

b) Vì AB=AC, BD=DC

=> AD là đường trung trực của BC

=> AD _|_ BC

=> \(S_{\Delta ABD}=\frac{1}{2}AD\cdot BD;S_{\Delta CAD}=\frac{1}{2}AD\cdot DC\)

\(\frac{S_{\Delta ABD}}{S_{\Delta CAD}}=\frac{AD\cdot BD}{AD\cdot DC}=\frac{AD}{DC}=1\)

24 tháng 3 2017

ta co: AB2+AC2=100      Ma BC2=100

\(\Rightarrow\Delta ABC\)vuong tai A

A, Trong \(\Delta ABC\)co AD la phan giac

\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)(tinh chat duong phan giac)

\(\Rightarrow\frac{AB}{AB+AC}=\frac{BD}{BD+DC}\)\(\Rightarrow\frac{8}{8+6}=\frac{BD}{10}\Rightarrow BD=\frac{8.10}{14}=\frac{40}{7}cm\)

ta co: BD+DC=BC\(\Rightarrow DC=BC-BD=10-\frac{40}{7}=\frac{30}{7}cm\)

B, Ke duong cao AH

ta co: \(S_{\Delta ABD}=\frac{1}{2}AH.BD\)va \(S_{\Delta ACD}=\frac{1}{2}AH.DC\)

\(\Rightarrow\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}=\frac{40}{7}:\frac{30}{7}=\frac{4}{3}\)

21 tháng 5 2020

-5/x=y/8.giải giúp mình

22 tháng 4 2016

a,theo tính chất đường phân giác ta có:

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{14}{16}=\frac{7}{8}\)

=> BD=7/8 CD

Mà BD+CD=BC=12

<=> 7/8CD+CD=12

<=> CD=6,4cm

=> BD=5.6cm

22 tháng 4 2016

b, vì tam giác ABD và ACD có chung đường cao hạ từ A nên \(\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{7}{8}\)

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Lời giải:
a. $AB=AC=14$ cm nên $ABC$ là tam giác cân tại $A$
Do đó đường phân giác $AD$ đồng thời là đường trung tuyến 

$\Rightarrow BD=DC=\frac{BC}{2}=6$ (cm) 

b. 

$\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=1$ 

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Hình vẽ:

1 tháng 3 2018

Hình tự vẽ lấy nhé

a) Trong tam giác ABC, ta có: AD là đường phân giác của:

\(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)

Mà AB = 15cm và AC = 20cm ( gt )

Nên \(\frac{DB}{DC}=\frac{15}{20}\)

\(\Rightarrow\frac{DB}{DB+DC}=\frac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )

\(\Rightarrow\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}\left(cm\right)\)

b) Kẻ \(AH\perp BC\)

Ta có: \(S_{ABD}=\frac{1}{2}AH.BD\)

\(S_{ACD}=\frac{1}{2}AH.CD\)

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.CD}=\frac{BD}{DC}\)

Mà \(\frac{DB}{DC}=\frac{15}{12}=\frac{3}{4}\)

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{3}{4}\left(đpcm\right)\)

13 tháng 9 2023

a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 10 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{10 - BD}} = \frac{6}{8} \Leftrightarrow 8BD = 6.\left( {10 - BD} \right) \Rightarrow 8BD = 60 - 6BD\)

\( \Leftrightarrow 8BD + 6BD = 60 \Leftrightarrow 14BD = 60 \Rightarrow BD = \frac{{60}}{{14}} = \frac{{30}}{7}\)

\( \Rightarrow DC = 10 - \frac{{30}}{7} = \frac{{40}}{7}\)

Vậy \(BD = \frac{{30}}{7}cm;DC = \frac{{40}}{7}cm\).

b) Kẻ \(AE \bot BC \Rightarrow AE\) là đường cao của tam giác \(ABC\).

Vì \(AE \bot BC \Rightarrow AE \bot BD \Rightarrow AE\)là đường cao của tam giác \(ADB\)

Diện tích tam giác \(ADB\) là:

\({S_{ADB}} = \frac{1}{2}BD.AE\)

Vì \(AE \bot BC \Rightarrow AE \bot DC \Rightarrow AE\)là đường cao của tam giác \(ADC\)

Diện tích tam giác \(ADC\) là:

\({S_{ADC}} = \frac{1}{2}DC.AE\)

Ta có: \(\frac{{{S_{ADB}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}AE.BD}}{{\frac{1}{2}AE.CD}} = \frac{{BD}}{{DC}} = \frac{{\frac{{30}}{7}}}{{\frac{{40}}{7}}} = \frac{3}{4}\).

Vậy tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\) là \(\frac{3}{4}\).

18 tháng 2 2023

 

18 tháng 2 2023