\(x=A1cos\left(\omega t+\varphi1\right)+A2cos\left(\omega t+\varphi2\right)\)
chứng minh rằng phương trình trên là dao động điều hòa
ai giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A^2=A_1^2+A^2_2+2A_1A_1\cos\left(\widehat{A_1A_1}\right)\Rightarrow\left(\widehat{A_1A_2}\right)=\dfrac{\pi}{2}\)
Chỗ này đề bài ko cho rõ thì chia làm 2 trường hợp, x1 nhanh pha hơn hoặc x2 nhanh pha hơn, rồi tính được phi 2
Bấm máy là xong luôn pha ban đầu của dao động tổng hợp, biết bấm ko để tui chỉ luôn?
Thôi chỉ luôn đi, mất công hỏi nhiều mệt người
SHIFT Mode , cái nút tròn ở giữa ấy, ấn phía bên dưới, rồi nhấn 3, rồi nhấn tiếp 2
Nhấn tiếp Mode, rồi nhấn số 2
Nhấn SHIFT Mode lần nữa, rồi nhấn số 4 để nó chuyển về radian
Nhập theo mẫu sau: A1 SHIFT (-) phi 1 +A2 SHIFT (-) phi 2 , rồi nhất "=",nó sẽ ra kết ủa y hệt cái phương trình đã cho, từ đó tìm được pha ban đầu của phương trình tổng hợp. Biết phi 2, biết phi, dễ dàng tính được biểu thức
Ta có: \(x\left( t \right) = {x_1}\left( t \right) + {x_2}\left( t \right) = 2\left[ {\cos \left( {\frac{\pi }{3}t + \frac{\pi }{6}} \right) + \cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)} \right]\)
\(2\left[ {\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} + \frac{\pi }{3}t - \frac{\pi }{3}}}{2}} \right).\cos \left( {\frac{{\frac{\pi }{3}t + \frac{\pi }{6} - \frac{\pi }{3}t + \frac{\pi }{3}}}{2}} \right)} \right] = 2\left[2. {\cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right).\cos \frac{\pi }{4}} \right] = 2\sqrt 2 \cos \left( {\frac{\pi }{3}t - \frac{\pi }{{12}}} \right)\)
Vậy biên độ là \(2\sqrt 2 \), pha ban đầu \( - \frac{\pi }{{12}}\)
a) Biên độ dao động \(A = - 5\); Pha ban đầu của dao động: \(\varphi = 0\)
b) Pha dao động tại thời điểm \(t = 2\) à \(\omega t + \varphi = 4\pi .2 = 8\pi \)
Chu kỳ \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{4\pi }} = 0,2\)
Trong khoảng thời gian 2 giây, số dao động toàn phần vật thực hiện được là: \(\frac{2}{{0,2}} = 10\) (dao động)
Ta có
\(\begin{array}{l}t = 0 \Rightarrow \omega t = 0\\t = \frac{T}{4} \Rightarrow \omega t = \omega .\frac{{\frac{{2\pi }}{\omega }}}{4} = \frac{\pi }{2}\\t = \frac{T}{2} \Rightarrow \omega t = \omega .\frac{{\frac{{2\pi }}{\omega }}}{2} = \pi \\t = \frac{{3T}}{4} \Rightarrow \omega t = \omega .\frac{{3.\frac{{2\pi }}{\omega }}}{4} = \frac{{3\pi }}{2}\\t = T \Rightarrow \omega t = \omega .\frac{{2\pi }}{\omega } = 2\pi \end{array}\)
a) \(A = 3cm,\varphi = 0\)
+) Với t=0 thì \(x = 3\cos \left( {\omega .0 + 0} \right) = 3\)
+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} + 0} \right) = 0\)
+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi + 0} \right) = - 3\)
+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} + 0} \right) = 0\)
+Với \(t = T\)thì \(x = 3\cos \left( {2\pi + 0} \right) = 3\)
b) \(A = 3cm,\varphi = - \frac{\pi }{2}\)
+) Với t=0 thì \(x = 3\cos \left( {0 - \frac{\pi }{2}} \right) = 0\)
+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} - \frac{\pi }{2}} \right) = 3\)
+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi - \frac{\pi }{2}} \right) = 0\)
+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} - \frac{\pi }{2}} \right) = 3\)
+Với \(t = T\)thì \(x = 3\cos \left( {2\pi - \frac{\pi }{2}} \right) = 0\)
c) \(A = 3cm,\varphi = \frac{\pi }{2}\)
+) Với t=0 thì \(x = 3\cos \left( {0 + \frac{\pi }{2}} \right) = 0\)
+) Với \(t = \frac{T}{4}\)thì \(x = 3\cos \left( {\frac{\pi }{2} + \frac{\pi }{2}} \right) = 3\)
+) Với \(t = \frac{T}{2}\)thì \(x = 3\cos \left( {\pi + \frac{\pi }{2}} \right) = 0\)
+)Với \(t = \frac{{3T}}{4}\)thì \(x = 3\cos \left( {\frac{{3\pi }}{2} + \frac{\pi }{2}} \right) = 3\)
+Với \(t = T\)thì \(x = 3\cos \left( {2\pi + \frac{\pi }{2}} \right) = 0\)
\(\tan(\varphi_1-\varphi_2)=\dfrac{\tan\varphi_1-\tan\varphi_2}{1+\tan\varphi_1.\tan\varphi_2}\)
\(=\dfrac{\dfrac{R_1}{Z}-\dfrac{R_2}{Z}}{1+\dfrac{R_1}{Z}.\dfrac{R_2}{Z}}\)
\(=\dfrac{(R_1-R_2).Z}{Z^2+R_1.R_2}\)
Bạn tổng hợp bằng giản đồ véc tơ nhé.