Cho 2^n + 1 là số nguyên tố (n > 2)
Chứng minh 2^n - 1 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra, ta có: \(n>2\Rightarrow2^n+1>2^2+1=5\)
\(n>2\Rightarrow2^n-1>2^2-1=4\)
Ta có: \(\left(2^n+1\right)+\left(2^n-1\right)=2.2^n=2^{n+1}⋮2\)
Mà \(\left(2^n+1;2\right)=1\Rightarrow2^{n-1}⋮2\)
Lại có \(2^n-1>4\)
\(\Rightarrow2^n-1\)là hợp số
=> đpcm
2n>22=4>3 (vì n>2)
=>2n=3k+1;3k+2
xét 2n=3k+2 =>2n+1=3k+3=3(k+1) chia hết cho 3
=>2n+1 là hợp số (trái giả thuyết)
=>2n=3k+1
=>2n-1=3k+1-1=3k chia hết cho 3
=>2n-1 là hợp số
=>đpcm
Ta có: 2^n+1;2^n;2^n-1 là 3 số tự nhiên liên tiếp
=>một trong 3 số trên chia hết cho 3
mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3
mặt khác: 2^n ko chia hết cho 3
=>2^n-1 chia hết cho 3
1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3
Lời giải:
Nếu $n$ lẻ thì:
$2^n+1\equiv (-1)^n+1\equiv -1+1\equiv 0\pmod 3$
Hay $2^n+1\vdots 3$
Mà $2^n+1>3$ với $n>2$ nên $2^n+1$ không là snt (trái giả thiết)
Do đó $n$ chẵn.
Với $n$ chẵn thì:
$2^n-1\equiv (-1)^n-1\equiv 1-1\equiv 0\pmod 3$
Mà $2^n-1>3$ với $n>2$ nên $2^n-1$ là hợp số.
HELP ME