K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

Bạn vẽ hình rồi mình giải cho

16 tháng 1 2018

Xét tam giác ADE và ADF :

Ta có: AD chung

BAD = DAC

=> tam giác ADE = ADF ( Cạnh huyền góc nhọn )

=> DE = DF

=> tam giác DEF cân tại D

a: Xét ΔADB và ΔADC có

AD chung

DB=DC

AB=AC

Do đó: ΔADB=ΔADC

b: ΔADB=ΔADC

=>\(\widehat{BAD}=\widehat{CAD}\)

ΔADB=ΔADC

=>\(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

=>AD\(\perp\)BC

Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)

Do đó: ΔAED=ΔAFD

=>DE=DF

=>ΔDEF cân tại D

c: Ta có: ΔAED=ΔAFD

=>AE=AF

Ta có: AE+EB=AB

AF+FC=AC

mà AE=AF và AB=AC

nên EB=FC

Xét ΔEBC và ΔFCB có

EB=FC

\(\widehat{EBC}=\widehat{FCB}\)

BC chung

Do đó: ΔEBC=ΔFCB

=>\(\widehat{ECB}=\widehat{FBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

=>I nằm trên đường trung trực của BC(1)

Ta có: D là trung điểm của BC

AD\(\perp\)BC tại D

Do đó: AD là đường trung trực của BC(2)

Từ (1),(2) suy ra A,D,I thẳng hàng

9 tháng 2 2022

a. Xét tam giác  ABD và tam giác ACD

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

AD : cạnh chung

Vậy tam giác  ABD = tam giác ACD ( c.g.c )

b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao

=> AD vuông BC

CD = BC : 2 = 12 : 2 =6cm

c.áp dụng định lý pitago vào tam giác vuông ADC 

\(AC^2=AD^2+DC^2\)

\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

d.Xét tam giác vuông BDE và tam giác vuông CDF có:

AD = CD ( gt )

góc B = góc C

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)

=> DE = DF ( 2 cạnh tương ứng )

=> tam giác DEF cân tại D

9 tháng 2 2022

a) Tam giác ABD và tam giác ACD có:

     BD = CD (Vì D là trung điểm của BC)

     góc B = góc C

                              (vì tam giác ABC cân tại A)

     AB = AC

  Do đó: am giác ABD = tam giác ACD (c.g.c)

   Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)

b) Vì góc ADB = góc ADC (cmt) mà góc ADB +  góc ADC 180 độ (2 góc kề bù)

    nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC

c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)

                  mà BC = 12 cm

       => CD = 12 /2 = 6 cm

 Vì AD vuông góc với BC nên tam giác ADC vuông tại D 

   => AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)

    => 10^2 = AD ^ 2 + 6 ^2

   => AD^2 = 64

   => AD = 8 (cm) (vì AD > 0 )

 d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé

       => DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)

7 tháng 2 2021

a) Xét tam giác ADB và tam giác AEC:

^ADB = ^AEC (=90o)

AB = AC (∆ABC cân tại A)

^A chung

=> Tam giác ADB = Tam giác AEC (ch - gn)

=> AD = AE (2 cạnh tương ứng)

=> Δ ADE cân tại A

b)  Xét tam giác AED: ^A + ^AED + ^ADE = 180o (tổng 3 góc trong tam giác)

Mà ^AED = ^ADE (Δ ADE cân tại A) 

=>  ^A = 2 ^AED (1)

Xét tam giác ABC: ^A + ^B + ^C = 180o (tổng 3 góc trong tam giác)

Mà ^B = ^C (Δ ABC cân tại A) 

=>  ^A = 2 ^B (2)

Từ (1) và (2) => ^B = ^AED

Mà 2 góc này ở vị trí đồng vị

=> DE // BC (dhnb)

c) Xét tam giác BEC và tam giác CDB:

^BEC = ^CDB (= 90o)

BC chung

^B = ^C (∆ABC cân tại A)

=> Tam giác CBE = Tam giác CDB (ch - gn)

=> IB = IC (2 cạnh tương ứng)

d) Xét tam giác ABI và tam giác ACI:

AB = AC (∆ABC cân tại A)

AI chung

IB = IC (cmt)

=> Tam giác ABI = Tam giác ACI (c - c - c)

=> ^BAI = ^CAI (2 góc tương ứng)

=> AI là phân giác ^A hay AM là phân giác ^A (M\(\in AI\))

Xét ∆ABC cân tại A có:  AM là phân giác ^A (cmt)

=> AM là đường cao (TC các đường trong tam giác)

=> AM \(\perp\) BC 

 

28 tháng 4 2023

Hình nháp thôi em .

Ta có : \(\Delta ABC\) cân tại A 

\(\Rightarrow\) góc ABC \(=\) góc ACB 

Ta có : D là trung điểm của BC

\(\Rightarrow DB=DC\)

Xét \(\Delta BDE\) và \(\Delta CDF\) lần lượt vuông tại E và F có :

                góc ABC \(=\) góc ACB (cmt)

              \(DB=DC\left(cmt\right)\)

Do đó : \(\Delta BDE=\Delta CDF\left(ch-gn\right)\)

\(\Rightarrow DE=DF\)

\(\Rightarrow\Delta DEF\) cân tại D

28 tháng 4 2023

cíu mình với

 

b) Ta có: BM=CM(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(ΔACB cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

16 tháng 3 2019

Vì ΔABC cân tại A và DB = DC (gt) nên đường trung tuyến AD cũng là đường phân giác của ∠(BAC) (tính chất).

Ta có: DE ⊥ AB (gt)

DF ⊥ AC (gt)

Suy ra: DE = DF (tính chất đường phân giác của góc).

a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có

AB=AC

góc A chung

Do đó: ΔADB=ΔAEC

=>AD=AE

b: Xét ΔABC co AE/AB=AD/AC

nên ED//BC

c: Xét ΔIBC có góc IBC=góc ICB

nên ΔIBC cân tại I

d: AB=AC

IB=IC

Do đó: AI là trung trực của BC

=>AI vuông góc với BC