K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

ta có : \(\left|x^2+|6x-2|\right|=x^2+4\)

\(\Leftrightarrow x^2+\left|6x-2\right|=x^2+4\) (vì \(x^2+\left|6x-2\right|\ge0\) với mọi giá trị của \(x\) )

\(\Leftrightarrow\left|6x-2\right|=4\)

th1: \(6x-2\ge0\Leftrightarrow x\ge\dfrac{1}{3}\)

\(\Rightarrow\) \(\left|6x-2\right|=4\Leftrightarrow6x-2=4\Leftrightarrow6x=6\Leftrightarrow x=1\left(tmđk\right)\)

th2: \(6x-2< 0\Leftrightarrow x< \dfrac{1}{3}\)

\(\Rightarrow\left|6x-2\right|=4\Leftrightarrow2-6x=4\Leftrightarrow6x=-2\Leftrightarrow x=\dfrac{-1}{3}\left(tmđk\right)\) vậy \(x=1\) hoặc \(x=\dfrac{-1}{3}\)

9 tháng 1 2018

bn ui tmdk là j v

x^2+1>=1

=>(x^2+1)^2>=1

y^2+2>=2

=>(y^2+2)^4>=16

=>(x^2+1)^2+(y^2+2)^4>=17

=>(x^2+1)^2+(y^2+2)^4-2>=15

Dấu = xảy ra khi x=y=0

Đề bằng 1 thì (x-2)(x+3)=0 suy ra x=2 hoặc x=-3.

22 tháng 2 2020

thanks bạn

22 tháng 7 2017

\(x^2-5x+6=\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)

22 tháng 7 2017

1, <=>x^2-x-2 = x^2-4

<=>x^2-4-x^2+x+2 = 0

<=> x-2 = 0

<=> x=2

2, <=> (x-2).(x-3)=0

<=> x-2 = 0 hoặc x-3 = 0

<=> x=2 hoặc x=3

14 tháng 7 2017

\(\left(x-2\right)^8=\left(x-2\right)^6\)

\(\Leftrightarrow\left(x-2\right)^8-\left(x-2\right)^6=0\)

\(\Leftrightarrow\left(x-2\right)^6\left[\left(x-2\right)^2-1\right]=0\)

\(\Leftrightarrow\left(x-2\right)^6\left(x-3\right)\left(x-1\right)=0\)

\(\Rightarrow x=2;x=3;x=1\)

14 tháng 7 2017

=>x-2=0 hoặc x-2=1

=>x-2=0=>x=2

=>x-2=1=>x=3

25 tháng 7 2016

\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)

\(\Leftrightarrow-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)

=> x \(\in\) {-1;0;1;2;3;4;5;6}

25 tháng 7 2016

\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)

\(\Leftrightarrow\)\(\frac{9-10}{12}\le\frac{x}{12}< 1-\left(\frac{8-3}{12}\right)\)

\(\Leftrightarrow\)\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)

\(\Leftrightarrow-1\le x< 7\)

Mà x nguyên

=>x={-1;0;1;2;3;4;5;6}

22 tháng 8 2021

undefined

22 tháng 8 2021

a. \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\cdot\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)

<=> \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

<=> \(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

<=> \(P=\dfrac{\sqrt{x}+2}{x-2\sqrt{x}}\)

b. Khi \(x=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\) => \(\sqrt{x}=2+\sqrt{3}\)

=> \(P=\dfrac{2+\sqrt{3}+2}{7+4\sqrt{3}-2\left(2+\sqrt{3}\right)}=\dfrac{4+\sqrt{3}}{7+4\sqrt{3}-4-2\sqrt{3}}=\dfrac{4+\sqrt{3}}{3+2\sqrt{3}}=\dfrac{5\sqrt{3}-6}{3}\)

check giùm mik

 

31 tháng 5 2018

Ta có: \(\left(x^2+7\right)\left(x^2-49\right)< 0\)

\(\Rightarrow\)\(\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}}\)(vô lí)   hoặc  \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)(thỏa mãn)

\(\Rightarrow-7< x^2< 49\)(  \(\forall x\ge0\))

\(\Rightarrow0\le x< \sqrt{49}\)

\(\Rightarrow0\le x< 7.\)

31 tháng 5 2018

chia ra làm 2 trường hợp

Trường hợp 1

-         x2 + 7 < 0

-         x2 – 49  > 0

Suy ra đc : x < cộng  trừ căn 7, x > cộng trừ 7(vô lí)

trường hợp 2

- x2 +7 > 0

- x2 – 49 < 0

Suy ra đc: công trừ căn 7 < x < cộng trừ 7

Vậy công trừ căn 7 < x < cộng trừ 7

Mk chỉ nói z thôi, b tự trình bày

23 tháng 9 2019

Ta có: \(x^4+y^4+\left(x+y\right)^4\)

\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)

\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x+y\right)+2x^2y^2\)

\(=2\left[\left(x^2+y^2\right)+2xy\left(x+y\right)+x^2y^2\right]\)

\(=2\left(x^2+xy+y^2\right)^2\left(đpcm\right)\)

23 tháng 9 2019

Em xem lại dòng thứ 3 và 4, chưa đúng rồi em !