Cho tam giác ABC vuông tại A.M là trung điểm BC.Trên tia đối của tia MA lấy điểm D sao cho M là trung điểm của AD
a,CMR:tam giác AMB=tam giác DMC
b,CMR:AC vuông góc DC
c,CMR:AM=1/2 BC
nhớ giải chi tiết giúp mik nha, vẽ cả hình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)BMC và \(\Delta\)DMA có:
BM = DM (gt)
\(\widehat{BMC}\) = \(\widehat{DMA}\) (đối đỉnh)
MC = MA (suy từ gt)
=> \(\Delta\)BMC = \(\Delta\)DMA (c.g.c)
=> BC = DA (2 cạnh tương ứng)
b) Vì \(\Delta\)BMC = \(\Delta\)DMA (câu a)
nên \(\widehat{BCA}\) = \(\widehat{CAD}\) (2 góc t ư) và BC = DA (2 cạnh t ư)
Xét \(\Delta\)DCA và \(\Delta\)BAC có:
CA chung
\(\widehat{CAD}\) = \(\widehat{ACB}\) ( cm trên)
DA = BC (cm trên)
=> \(\Delta\)DCA = \(\Delta\)BAC (c.g.c)
=> \(\widehat{DCA}\) = \(\widehat{BAC}\) = 90 độ (góc t ư)
Do đó CD \(\perp\) AC
Ta có hình vẽ sau:
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)
Vì M là trung điểm của AD
=> BM = DM
AM = CM
Xét tam giác AMB và tam giác DMC có :
BM = DM ( cmt )
\(\widehat{BMA}=\widehat{DMC}\) ( 2 góc đối đỉnh )
AM = CM ( cmt )
=> Tam giác AMB = tam giác DMC ( c-g-c )
b) Vì tam giác AMB = tam giác DMC ( cmt )
\(\Rightarrow\widehat{BAM}=\widehat{MDC}\) ( 2 góc tương ứng )
Mà 2 góc này lại ở vị trí so le trong
=> BA // DC
Vì \(BA\perp DC\)
\(\Rightarrow DC\perp AC\)
c) Xét tam giác ADM và tam giác DCM có :
BA = DC ( cmt )
\(\widehat{BAC}=\widehat{DCA}=90^o\)
DM cạnh chung
=> tam giác ADM = tam giác DCM ( c-g-c )
\(\Rightarrow AD=BC\)
\(\Rightarrow2AM=BC\)
\(AM=\frac{1}{2}BC\)
\(\Rightarrowđpcm\)
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: AB//DC và AB=DC; \(\widehat{ACD}=90^0\)
b:
Ta có: ABDC là hình chữ nhật
nên AD=BC
XétΔBCA và ΔDAC có
BC=DA
CA chung
BA=DC
Do đó: ΔBCA=ΔDAC
a: Xét ΔAMB và ΔDMC có
MA=MD
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà
nên ABDC là hình chữ nhật
Suy ra: AB//DC và AB=DC;
b:
Ta có: ABDC là hình chữ nhật
nên AD=BC
XétΔBCA và ΔDAC có
BC=DA
CA chung
BA=DC
Do đó: ΔBCA=ΔDAC
a) Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
a) Xét \(\Delta AMB\) và \(\Delta DMC\) có :
\(AM=MD\left(gt\right)\)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
\(BM=MC\left(gt\right)\)
=> \(\Delta AMB\) = \(\Delta DMC\) (c.g.c)
b) Xét \(\Delta AMC\) và \(\Delta BMD\) có :
\(BM=MC\left(gt\right)\)
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)
\(AM=MC\left(gt\right)\)
=> \(\Delta AMC\) =\(\Delta BMD\) (c.g.c)
Mà ta có : \(\left\{{}\begin{matrix}\Delta ABC=\Delta AMB+\Delta AMC\\\Delta BDC=\Delta BMD+\Delta DMC\end{matrix}\right.\)
=> \(\Delta ABC=\Delta BDC\)
Có thêm : \(\widehat{BAM}+\widehat{CAM}=90^o\)
=> \(\widehat{DCM}+\widehat{ACM}=90^o\)
Do đó : \(AC\perp BC\left(đpcm\right)\)
c) Theo giả thuyết có :
\(\Delta ABC\) vuông tại A
Mà có : \(BM=MC\left(gt\right)\)
=> AM là đường trugn tuyến trong tam giác vuông
\(\Rightarrow AM=\dfrac{1}{2}BC\) (Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> đpcm
Bạn ơi thu nhỏ hình lại