Đặt ẩn phụ :
(x-2)6 +(x-4)6 =64
Gợi ý: Đặt t =x-3 phương trình ẩn t sau cùng: t6+15t4+15t2-31=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(-2\le x\le2\)
\(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
<=> \(3\left(\sqrt{2+x}-2\sqrt{2-x}\right)=10-3x-4\sqrt{4-x^2}\)
Đặt: \(t=\sqrt{2+x}-2\sqrt{2-x}\) => \(t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó pt trở thành:
\(3t=t^2\)
<=> \(t^2-3t=0\)
<=> \(t\left(t-3\right)=0\)
<=> \(\orbr{\begin{cases}t=0\\t=3\end{cases}}\)
đến đây bn tự giải nốt nhé
( x ²+x) ²+4.( x ²+x)= 12
⇔ ( x²+x)²+4( x²+x)+4= 16
⇔ ( x²+x+2)²= 16
⇔ x²+x+2= ±4
Nếu x²+x+2= 4
⇔ x²+x-2= 0
⇔ ( x-1).( x+2)= 0
⇔ x= 1 hoặc x= -2
Nếu x²+x+2= -4
⇔ x²+x+6= 0
⇔ x²+2.0,5.x+0,25+5,75= 0
⇔ ( x+0,5)²= -5,75
⇒ Phương trình vô nghiệm
Vậy x= 1 hoặc x= -2
P/s:#Học Tốt#
\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
\(x^2\left(x+1\right)^2+4x\left(x+1\right)-12=0\)
\(x^4+2x^3+x^2+4x^2+4x-12=0\)
\(x^4+2x^3+5x^2+4x-12=0\)
\(\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)=0\)
\(x^2+x+6=0\)
=> vô nghiệm
\(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
Đặt m = x - 1 .Điều kiện : m ≥ 0, x ≥ 1
Ta có : x - x - 1 -3 = 0 ⇔ (x -1) - x - 1 -2 =0
⇔ m 2 -m - 2 =0
Phương trình m 2 -m - 2 = 0 có hệ số a = 1, b = -1 , c = -2 nên có dạng
a – b + c = 0
Suy ra : m 1 = -1 (loại) , m 2 = -(-2)/1 = 2
Với m =2 ta có: x - 1 =2 ⇒ x -1 =4 ⇔ x =5
Giá trị của x thỏa mãn điều kiện bài toán
Vậy phương trình đã cho có 1 nghiệm : x=5
x + 1 x 2 - 4 . x + 1 x + 3 = 0 Đ ặ t t = x + 1 x
(1) trở thành: t2 – 4t + 3 = 0 (2)
Giải (2):
Có a = 1; b = -4; c = 3
⇒ a + b + c = 0
⇒ (2) có nghiệm t1 = 1; t2 = c/a = 3.
+ t = 1 ⇒ x + 1/x = 1 ⇔ x2 + 1 = x ⇔ x2 – x + 1 = 0
Có a = 1; b = -1; c = 1 ⇒ Δ = (-1)2 – 4.1.1 = -3 < 0
Phương trình vô nghiệm.
Đặt \(t=x^2+x+1\)
\(\Rightarrow t^2=x^4+x^2+1+2x^3+2x^2+2x=x^4+x^2+1+2x\left(x^2+x+1\right)=x^4+x^2+1+2xt\)
\(\Rightarrow t^2-2xt=x^4+x^2+1\)
PT của đề bài \(\Leftrightarrow t^2=3t\left(t-2x\right)\Leftrightarrow t\left(3t-6x-t\right)=0\Leftrightarrow t\left(t-3x\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+1-3x\right)=0\Leftrightarrow\left(x^2+x+1\right)\left(x-1\right)^2=0\)(2)
Do x2 + x + 1 >0 với mọi x nên (2) <=> x=1
PT có nghiệm duy nhất x = 1.
Em kiểm tra lại câu a, chỗ \(x^2-x+z\) chữ \(z\) đó có vấn đề, nó phải là 1 con số ví dụ số 2 (chắc em nhìn nhầm số 2 thành chữ z)
ĐK: \(x\ge8\)
Đặt \(a=\sqrt[3]{x-1}\text{ (}a\ge\sqrt[3]{7}\text{)};\text{ }b=\sqrt{x-8}\text{ (}b\ge0\text{)}\Rightarrow x=b^2+8\)
\(a^3-b^2=x-1-\left(x-8\right)=7\text{ (*)}\)
\(pt\text{ thành }a^2-2a-\left(b^2+8-5\right)b-3\left(b^2+8\right)+31=0\)
\(\Leftrightarrow\left(a^2-2a\right)-\left(b^3+3b^2+3b\right)+7=0\)
\(\Leftrightarrow\left(a-1\right)^2-\left(b+1\right)^3+a^3-b^2=0\)
Đặt \(b+1=c\text{ (}c\ge1\text{)}\)
\(pt\text{ thành }a^3-c^3+\left(a-1\right)^2-\left(c-1\right)^2=0\)
\(\Leftrightarrow\left(a-c\right)\left(a^2+ac+c^2\right)+\left(a-c\right)\left(a+c-2\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left[a^2+c^2+a+c+ac-2\right]=0\)
\(\Leftrightarrow a-c=0\text{ (do }a^2+c^2+a+c+ac-2>0\text{ với mọi }a\ge\sqrt[3]{7};c\ge1\text{)}\)
\(\Leftrightarrow a=c\Leftrightarrow a=b+1\)
Thay \(b=a-1\) vào \(\left(\text{*}\right)\)ta được
\(a^3-\left(a-1\right)^2=7\Leftrightarrow\left(a-2\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow a-2=0\text{ hoặc }a^2+a+4=0\text{ (vô nghiệm)}\)
\(\Leftrightarrow a=2\)
\(\Rightarrow\sqrt[3]{x-1}=2\Leftrightarrow x=9\)
Kết luận: \(x=9\).