Cho tam giác ABC có AB = AC, lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho : AD = AE
a) Chứng minh rằng BE = CD
b ) Gọi O là giao điểm của BE và CD. Chứng minh OB = OC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACD có
AB=AC
\(\stackrel\frown{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
b: Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Xét ΔBOD và ΔCOE có
\(\widehat{ODB}=\widehat{OEC}\)
DB=EC
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔBOD=ΔCOE
a/ Xét 2 tam giác BDE và CED có
BD=EC
DE chung
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED
=> dpcm (c.g.c)
b/ Có góc DKB bằng góc EKC do đối đỉnh
KD=KE
góc BDK=góc CEK
Vậy tam giác BOD = tam giác COE
a/ Xét tam giác ABE và tam giác ACD có :
AD = AE , góc A là góc chung của hai tam giác , AB = AC
=> tam giác ABE = tam giác ACD => CD = BE
b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)
=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)
Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)
Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)
a) Xét tam giác ABE và tam giác ACD:
có+AB=AC(gt)
+A: góc chung
+AD=AE(gt)
Vậy tam giác ABE=tam giác ACD(c.g.c)
=> BE=CD( 2 cạnh tương ứng )
b)
nên: ABD=ACE( 2 góc tương ứng )
có:+ góc BOD=COE( đối đỉnh)
+AB=AC( tam giác ABC cân vì có 2 cạnh bên bằng nhau) mà AD=AE(gt)=>BD=CE
+góc ABE=ACD(cmt)
Vậy tam giác BOD=COE(g.c.g)
^...^ ^_^
a, Xét tam giác ABE và tam giác ACD có :
AB = AC ( theo bài cho )
góc A chung
AE = AD ( theo bài cho )
Do đó : tam giác ABE = tam giác ACD ( c.g.c )
=> góc ABE = góc ACD ( hai góc tương ứng )
b, Ta có : góc OBC = góc B - góc ABE
góc OCB = góc C - góc ACD
mà góc ABE = góc ACD ( theo câu a )
và góc B = góc C ( vì AB = AC nên tam giác ABC cân )
=> góc OBC = góc OCB
=> tam giác OBC cân tại O nên OB = OC .
Xét tam giác OBD và tam giác OCE có :
góc BOD = góc COE ( đối đỉnh )
OB = OC
góc OBD = góc OCE ( vì góc ABE = góc ACD hay góc OBD = góc OCE )
Do đó : tam giác OBD = tam giác OCE ( g.c.g )
=> OD = OE ( hai góc tương ứng )
Vậy OD = 0E và OB = OC .
Học tốt nhé
Bạn tự vẽ hình nhé:
a) Xét tam giác ABE và tam giác ACD có:
AD = AE (gt)
A chung
AB = AC (gt)
Suy ra: tam giác ABE = tam giác ACD
(c - g - c)
=> BE = CD ( 2 cạnh tương ứng
b) Ta có: AD + BD = AE + CE (AB = AC)
Mà AD = AE nên BD = CE.
Xét tam giác CDB và tam giác BDC có:
CD = BE (cmt)
BC là cạnh chung
BD = CE (cmt)
Suy ra: tam giác CDB = tam giác BDC
(c - c - c)
=> góc CDB = góc BEC (2 góc tương ứng)
Xét tam giác BDE và tam giác CED có:
CD = BE (cmt)
DE là cạnh chung
BD = CE (cmt)
Suy ra: tam giác BDE = tam giác CED
(c - c - c)
=> góc DBE = góc ECD ( 2 góc tương ứng)
Xét tam giác BOD và tam giác COE có:
góc DBE = góc ECD (cmt)
BD = CE (cmt)
góc CDB = góc BEC (cmt)
Suy ra: tam giác BOD = tam giác COE
(g - c - g)
=> OB = OC (2 cạnh tương ứng)