Tìm tất cả các nghiệm nguyên dương của phương trình \(\left(x+y\right)^2+y+3x=z^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
coi bậc 2 với ẩn x tham số y D(x) phải chính phường
<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2
=> -8y^2 +1 =k^2 => y =0
với y =0 => x =-1 và -2
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)
\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)
Với \(y=0\)thì x nguyên tùy ý.
Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)
Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)
Với \(x=-1\) thì \(\Rightarrow y=-1\)
Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay
\(\left(x-8\right)x=k^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)
\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)
Tới đây thì đơn giản rồi b làm tiếp nhé.
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
Giải
Từ phương trình thứ hai ta có: x= 2 - 2y thế vào phương trình thứ nhất được:
(m-1)(2-2y) + y =2
<=> ( 2m - 3)y= 2m-4 (3)
Hệ có nghiệm x,y là các số nguyên <=> (3) có nghiệm y nguyên.
Với m thuộc Φ => 2m-3 khác 0 => (3) có nghiệm y=\(\dfrac{2m-4}{2m-3}\)
y thuộc Φ <=> \(\left[{}\begin{matrix}2m-3=1\\2m-3=-1\end{matrix}\right.< =>\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)
Vậy có hai giá trị m thỏa mãn:1,2.
\(\left\{{}\begin{matrix}2y=1-mx\\3x+\left(m+1\right)y=-1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m +1\right)y=-1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=\dfrac{1-mx}{2}\\3x+\left(m+1\right).\dfrac{1-mx}{2}=-1\end{matrix}\right.\)
xét phương trình 2 ta được ; (m-2)(m+3)x=m+3
với m=2 thì hpt vô nghiệm, m=3 thì hpt có nghiệm với mọi m
xét pt 1 ta được y=1+3x/2=x+1+x-1/2 thuộc Z
=>x-1=2k
=>x=2k+1
do đó y=3k+2 với m\(\ne\)3 và m\(\ne\)2 thì x=1/m-2 thuộc Z
=>m-2 thuộc\(\left\{-1,1\right\}\)=.> m thuộc\(\left\{1,3\right\}\)thỏa mãn